Skip to main content
Log in

Rapid Degradation of Superabsorbent Poly(Potassium Acrylate) and its Acrylamide Copolymer Via Thermo-Oxidation by Hydrogen Peroxide

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Superabsorbent poly(potassium acrylate) (P(KA)) and poly[acrylamide-co-(potassium acrylate)] (P(Am-co-KA)) were synthesized and their effective degradation via chemical and biological processes were pursued. Significant reductions in dry mass and water absorbency were observed after P(KA) (53% and 54%, respectively) and P(Am-co-KA) (43% and 40%, respectively) were buried in the soil for ten weeks, indicating their partial biodegradation. Although the living fungal culture failed to degrade the polymers, digestion by its crude peroxidase (20 U/g, 16 h) significantly decreased the dry mass (15%; 15.0 ± 0.3 g) and water absorbency (13%; 16.0 ± 1.0 g/g) of P(KA). Chemical oxidation using H2O2 at high temperature with/without peroxidase efficiently liquidized both polymers specifying significant changes of their structures. The maximum degradation of P(KA) (99.84% weight loss) was obtained when incubated with 12.8% (v/w) H2O2 at 65 °C for 7.3 h while 98.43% weight loss was achieved after P(Am-co-KA) was incubated with 14.8% (v/w) H2O2 at 68 °C for 9.2 h. To assess the phytotoxicity of the degraded products, their effect on seed germination was determined. No significant inhibition was observed in mung bean germinating on both the untreated polymers and their oxidized products. On sweet corn, the degraded products were apparently less inhibitory than did the untreated polymers. These results suggested that the rapid and efficient degradation of polyacrylate and its copolymer by the thermo-oxidation of H2O2 could be applied for a larger scale of superabsorbent waste management.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kiatkamjornwong S (2007) Superabsorbent polymers and superabsorbent polymer composites. ScienceAsia 33(1):39–43. https://doi.org/10.2306/scienceasia1513-1874.2007.33(s1).039

    Article  Google Scholar 

  2. Oksińska MP, Magnucka EG, Lejcuś K, Pietr SJ (2016) Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria. Environ Sci Pollut Res 23(6):5969–5977. https://doi.org/10.1007/s11356-016-6130-6

    Article  CAS  Google Scholar 

  3. Zohourian mehr MJAD, Kabiri KJIPJ (2008) Superabsorbent polymer materials: A review. Iran Polym J 17(6):451–477

    Google Scholar 

  4. Behera S, Mahanwar PA (2020) Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials 59(4):341–356. https://doi.org/10.1080/25740881.2019.1647239

    Article  CAS  Google Scholar 

  5. Zhang M, Zhang S, Chen Z, Wang M, Cao J, Wang R (2019) Preparation and characterization of superabsorbent polymers based on sawdust. Polymers 11(11):1891

    Article  CAS  PubMed Central  Google Scholar 

  6. Sinha S (2018) 14 - Biodegradable superabsorbents: methods of preparation and application—a review. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing, pp 307–322

  7. Relleve LS, Aranilla CT, Barba BJD, Gallardo AKR, Cruz VRC, Ledesma CRM, Nagasawa N, Abad LV (2020) Radiation-synthesized polysaccharides/polyacrylate super water absorbents and their biodegradabilities. Radiat Phys Chem 170:108618. https://doi.org/10.1016/j.radphyschem.2019.108618

    Article  CAS  Google Scholar 

  8. Espinosa-Valdemar RM, Turpin-Marion S, Delfín-Alcalá I, Vázquez-Morillas A (2011) Disposable diapers biodegradation by the fungus Pleurotus ostreatus. Waste Manage 31(8):1683–1688. https://doi.org/10.1016/j.wasman.2011.03.007

    Article  CAS  Google Scholar 

  9. Wilske B, Bai M, Lindenstruth B, Bach M, Rezaie Z, Frede H-G, Breuer L (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res 21(16):9453–9460. https://doi.org/10.1007/s11356-013-2103-1

    Article  CAS  Google Scholar 

  10. Zhou Z, Du C, Li T, Shen Y, Zeng Y, Du J, Zhou J (2015) Biodegradation of a biochar-modified waterborne polyacrylate membrane coating for controlled-release fertilizer and its effects on soil bacterial community profiles. Environ Sci Pollut Res 22(11):8672–8682. https://doi.org/10.1007/s11356-014-4040-z

    Article  CAS  Google Scholar 

  11. Mai C, Schormann W, Majcherczyk A, Hüttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65(4):479–487. https://doi.org/10.1007/s00253-004-1668-5

    Article  CAS  PubMed  Google Scholar 

  12. Bankeeree W, Prasongsuk S, Imai T, Lotrakul P, Punnapayak H (2016) A Novel xylan-polyvinyl alcohol hydrogel bead with laccase entrapment for decolorization of reactive black 5. BioResources 11(3):6984–7000. https://doi.org/10.15376/biores.11.3.6984-7000

    Article  CAS  Google Scholar 

  13. Khanlari S, Dubé MA (2015) Effect of pH on poly(acrylic acid) solution polymerization. Journal of Macromolecular Science, Part A 52(8):587–592. https://doi.org/10.1080/10601325.2015.1050628

    Article  CAS  Google Scholar 

  14. Barleany DR, Dhamar Lestari RS, Yulvianti M, Susanto TR (2017) Acrylic acid neutralization for enhancing the production of grafted chitosan superabsorbent hydrogel. International Journal on Advanced Science, Engineering and Information Technology 7(2):702–708. https://doi.org/10.18517/ijaseit.7.2.2340

    Article  Google Scholar 

  15. Feng L, Yang H, Dong X, Lei H, Chen D (2018) pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition. J Appl Polym Sci 135(8):45886. https://doi.org/10.1002/app.45886

    Article  CAS  Google Scholar 

  16. Santos FB, Miranda NT, Schiavon MIRB, Fregolente LV, Wolf Maciel MR (2020) Thermal degradation kinetic of poly(acrylamide-co-sodium acrylate) hydrogel applying isoconversional methods. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09899-y

    Article  Google Scholar 

  17. Dispat N, Poompradub S, Kiatkamjornwong S (2020) Synthesis of ZnO/SiO2-modified starch-graft-polyacrylate superabsorbent polymer for agricultural application. Carbohyd Polym 249:116862. https://doi.org/10.1016/j.carbpol.2020.116862

    Article  CAS  Google Scholar 

  18. Leitão RCF, Moura CPD, Silva LRDD, Ricardo NMPS, Feitosa JPA, Muniz EC, Fajardo AR, Rodrigues FHA (2015) Novel superabsorbent hydrogel composite based on poly(acrylamide-co-acrylate)/nontronite: characterization and swelling performance. Quim Nova 38:370–377

    Google Scholar 

  19. Erceg T, Dapčević-Hadnađev T, Hadnađev M, Ristić I (2021) Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Colloid Polym Sci 299(1):11–23. https://doi.org/10.1007/s00396-020-04763-9

    Article  CAS  Google Scholar 

  20. Mahon R, Balogun Y, Oluyemi G, Njuguna J (2019) Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN Applied Sciences 2(1):117. https://doi.org/10.1007/s42452-019-1874-5

    Article  CAS  Google Scholar 

  21. Başak H (2020) The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Appl Ecol Environ Res 18(4):5907–5921

    Article  Google Scholar 

  22. Oksińska MP, Magnucka EG, Lejcuś K, Jakubiak-Marcinkowska A, Ronka S, Trochimczuk AW, Pietr SJ (2019) Colonization and biodegradation of the cross-linked potassium polyacrylate component of water absorbing geocomposite by soil microorganisms. Appl Soil Ecol 133:114–123. https://doi.org/10.1016/j.apsoil.2018.09.014

    Article  Google Scholar 

  23. Liang D, Du C, Ma F, Shen Y, Wu K, Zhou J (2018) Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS. Polymers 10(12):1296. https://doi.org/10.3390/polym10121296

    Article  CAS  PubMed Central  Google Scholar 

  24. Oprea S, Oprea V (2016) Biodegradation of crosslinked polyurethane acrylates/guar gum composites under natural soil burial conditions. E-Polymers 16(4):277–286. https://doi.org/10.1515/epoly-2016-0038

    Article  CAS  Google Scholar 

  25. Sutherland GRJ, Haselbach J, Aust SD (1997) Biodegradation of crosslinked acrylic polymers by a white-rot fungus. Environ Sci Pollut Res 4(1):16–20. https://doi.org/10.1007/BF02986258

    Article  CAS  Google Scholar 

  26. Gröllmann U, Schnabel W (1982) Free radical-induced oxidative degradation of polyacrylamide in aqueous solution. Polym Degrad Stab 4(3):203–212. https://doi.org/10.1016/0141-3910(82)90027-1

    Article  Google Scholar 

  27. Gilbert WJR, Johnson SJ, Tsau J-S, Liang J-T, Scurto AM (2017) Enzymatic degradation of polyacrylamide in aqueous solution with peroxidase and H2O2. J Appl Polym Sci 134(10):44560. https://doi.org/10.1002/app.44560

    Article  CAS  Google Scholar 

  28. Neira A, Tarraga M, Catalan R (2007) Degradation of polyacrylic acid by fenton’s reagent. J Chil Chem Soc 52:1314–1317

    Article  CAS  Google Scholar 

  29. Monemian SA, Goodarzi V, Zahedi P, Angaji MT (2007) PET/imidazolium-based OMMT nanocomposites via in situ polymerization: Morphological, thermal, and nonisothermal crystallization studies. Adv Polym Technol 26(4):247–257. https://doi.org/10.1002/adv.20105

    Article  CAS  Google Scholar 

  30. Gao J, Lin T, Wang W, Yu J, Yuan S, Wang S (1999) Accelerated chemical degradation of polyacrylamide. Macromol Symp 144(1):179–185. https://doi.org/10.1002/masy.19991440116

    Article  CAS  Google Scholar 

  31. Xiong B, Miller Z, Roman-White S, Tasker T, Farina B, Piechowicz B, Burgos WD, Joshi P, Zhu L, Gorski CA, Zydney AL, Kumar M (2018) Chemical Degradation of Polyacrylamide during Hydraulic Fracturing. Environ Sci Technol 52(1):327–336. https://doi.org/10.1021/acs.est.7b00792

    Article  CAS  PubMed  Google Scholar 

  32. Department of Economic and Social Affairs, Goal 15, Sustainable Development (2020), United Nations. https://sdgs.un.org/goals

Download references

Acknowledgements

This research was supported by the Distinguished Professor Grant from Thailand Research Fund (DPG6080001 for Suda Kiatkamjornwong), and Sci-Super VI fund from the Faculty of Science, Chulalongkorn University (63-005).

Author information

Authors and Affiliations

Authors

Contributions

W.B. designed and performed the experiments with assistance of C.S. whereas S.P. and P.L. were involved in planning and supervised the work. S.K. conceived the original idea, supervised, reviewed and edited the manuscript, and research fund provider. This manuscript was written and approved through contributions of all authors and they all contributed equally.

Corresponding author

Correspondence to Sehanat Prasongsuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankeeree, W., Samathayanon, C., Prasongsuk, S. et al. Rapid Degradation of Superabsorbent Poly(Potassium Acrylate) and its Acrylamide Copolymer Via Thermo-Oxidation by Hydrogen Peroxide. J Polym Environ 29, 3964–3976 (2021). https://doi.org/10.1007/s10924-021-02167-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02167-6

Keywords

Navigation