Skip to main content
Log in

Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21–7.49 log10 cfu g−1 of water absorbed by the SAP and decreased by 1.35–1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk’s salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg−1 of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aust SD (1995) Mechanisms of degradation by white rot fungi. Environ Health Perspect 103:59–61

    Article  CAS  Google Scholar 

  • Bai M, Wilske B, Buegger F, Esperschutz J, Bach M, Frede HG, Breuer L (2014) Relevance of nonfunctional linear polyacrylic acid for the biodegradation of superabsorbent polymer in soils. Environ Sci Pollut Res Int 22:5444–5452

    Article  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78A–87A

    Article  CAS  Google Scholar 

  • Bautista-Zapanta JN, Arafat HH, Tanaka K, Sawada H, Suzuki K (2009) Variation of 16S-23S internally transcribed spacer sequence and intervening sequence in rDNA among the three major Agrobacterium species. Microbiol Res 164:604–612

    Article  CAS  Google Scholar 

  • Caulfield MJ, Qiao GG, Solomon DH (2002) Some aspects of the properties and degradation of polyacrylamides. Chem Rev 102:3067–3084

    Article  CAS  Google Scholar 

  • Cheng P (2004) Chemical and photolytic degradation of polyacrylamides used in potable water treatment. Dissertation, University of South Florida

  • Dąbrowska J, Lejcuś K (2012) Characteristic of selected properties of superabsorbents. Infrastruct Ecol Rural Areas 3:59–68 (In Polish)

    Google Scholar 

  • Damiani G, Amedeo P, Bandi C, Fani R, Bellizzi D, Sgaramella V (1996) Bacteria identification by PCR-based techniques. In: Adolph KW (ed) Microbial genome methods. CRC Press Inc, Boca Raton, Florida, pp 167–177

    Google Scholar 

  • Guezennec AG, Michel C, Bru K, Touze S, Desroche N, Mnif I, Motelica-Heino M (2015) Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res Int 22:6390–6406

    Article  CAS  Google Scholar 

  • Holliman PJ, Clark JA, Williamson JC, Jones DL (2005) Model and field studies of the degradation of cross-linked polyacrylamide gels used during the regeneration of slate waste. Sci Total Environ 336:13–24

    Article  CAS  Google Scholar 

  • Humphry DR, Andrews M, Santos SR, James EK, Vinogradova LV, Perin L, Reis VM, Cummings SP (2007) Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia. Antonie van Leeuwenhoek 91:105–113

    Article  Google Scholar 

  • Huttermann A, Orikiriza LJB, Agaba H (2009) Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean 37:517–526

    Google Scholar 

  • James N (1958) Soil extract in soil microbiology. Can J Microbiol 4:363–370

    Article  CAS  Google Scholar 

  • Kay-Shoemake JL, Watwood ME, Sojka RE, Lentz RD (1998) Polyacrylamide as a substrate for microbial amidase in culture and soil. Soil Biol Biochem 30:1647–1654

    Article  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  Google Scholar 

  • Kościk B, Kowalczyk-Juśko A (1998) Application of the Aqua-Terra gel as a supplement to bedding in flue-cured tobacco growth. Zesz Probl Post Nauk Rol 461:227–238 (In Polish)

    Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Lande SS, Bosch SJ, Howard PH (1979) Degradation and leaching of acrylamide in soil. J Environ Qual 8:133–137

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175

    Google Scholar 

  • Larson RJ, Bookland EA, Williams RT, Yocom KM, Saucy DA, Freeman MB, Swift G (1997) Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. J Environ Polym Degrad 5:41–48

    CAS  Google Scholar 

  • Lee BKH, Baker GE (1972) Environment and the distribution of microfungi in a Hawaiian mangrove swamp. Pac Sci 26:11–19

    Google Scholar 

  • Lee S, Ka JO, Song HG (2012) Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J Microbiol 50:45–49

    Article  CAS  Google Scholar 

  • Lejcuś K, Orzeszyna H, Pawłowski A, Garlikowski D (2008) Superabsorbent application in anti-erosion systems. Infrastruct Ecol Rural Areas 9:189–194 (In Polish)

    Google Scholar 

  • Lejcuś K, Dąbrowska J, Garlikowski D, Spitalniak M (2015) The application of water-absorbing geocomposites to support plant growth on slopes. Geosynth Int 22:452-456. doi: 10.1680/gein.15.00025

  • Lopatin VV, Askadskii AA, Peregudov AS, Vasilev VG (2005) Structure and relaxation properties of medical-purposed polyacrylamide gels. J Appl Polymer Sci 96:1043–1058

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lu S, Duan M, Lin S (2003) Synthesis of superabsorbent starch-graft-poly(potassium acrylate-co-acrylamide) and its properties. J Appl Polym Sci 88:1536–1542

    Article  CAS  Google Scholar 

  • Mai C, Schormann W, Majcherczyk A, Huttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65:479–487

    Article  CAS  Google Scholar 

  • Matsuoka H, Ishimura F, Takeda T, Hikuma M (2002) Isolation of polyacrylamide-degrading microorganisms from soil. Biotechnol Bioprocess Eng 7:327–330

    Article  CAS  Google Scholar 

  • Nakamiya K, Toshihiko O, Shinichi K (1997) Degradation of synthetic water-soluble polymers by hydroquinone peroxidase. J Ferment Bioeng 84:213–218

    Article  CAS  Google Scholar 

  • Orzeszyna H, Lejcuś K, Garlikowski D, Pawłowski A (2015) Geocomposite element, particularly for enhancing plant growth. EP 2560472 B1

  • Parshetti G, Saratale G, Telke A, Govindwar S (2009) Biodegradation of hazardous triphenylmethane dye methyl violet by Rhizobium radiobacter (MTCC 8161). J Basic Microbiol 49:36–42

    Article  Google Scholar 

  • Ren GM, Sun DZ, Chung JS (2006) Kinetics study on photochemical oxidation of polyacrylamide by ozone combined with hydrogen peroxide and ultraviolet radiation. J Environ Sci 18:660–664

    Article  CAS  Google Scholar 

  • Shanker R, Ramakrishna C, Seth PK (1990) Microbial degradation of acrylamide monomer. Arch Microbiol 154:192–198

    Article  CAS  Google Scholar 

  • Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CB, Datta GN, Manchanda RK, Rao UR, Bhargava PM, Narlikar JV (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977–2986

    Article  CAS  Google Scholar 

  • Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Rmli J, Shamaan NA, Syed MA (2009) Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Environ Biol 30:57–64

    CAS  Google Scholar 

  • Stahl JD, Cameron MD, Haselbach J, Aust SD (2000) Biodegradation of superabsorbent polymers in soil. Environ Sci Pollut Res Int 7:83–88

    Article  CAS  Google Scholar 

  • Sutherland GR, Haselbach J, Aust SD (1997) Biodegradation of cross-linked acrylic polymers by a white-rot fungus. Eniviron Sci Pollut Res Int 4:16–20

    Article  CAS  Google Scholar 

  • Taranta C, Bork T, Meier W, Wilhelm R, Bratz M, Holmes KA, Cazeneuve E, Oloumi-Sadeghi H, Coffelt M (2009) Pesticide compositions for combating arthropod pests, snails and nematodes. CA2645280 A1 United States Patent Application Publication.

  • Wen Q, Chen Z, Zhao Y, Zhang H, Feng Y (2010) Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil contaminated soil. J Hazard Mater 175:955–959

    Article  CAS  Google Scholar 

  • Wen J, Ren C, Huang N, Liu Y, Zeng R (2014) Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water. Mar Genomics 19:13–14

    Article  Google Scholar 

  • Wilske B, Bai M, Lindenstruth B, Bach M, Rezaie Z, Frede HG, Breuer L (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res Int 21:9453–9460

    Article  CAS  Google Scholar 

  • Wolter M, Wiesche C, Zadrazil F, Hey S, Haselbach J, Schnug E (2002) Biological degradability of synthetic superabsorbent soil conditioners. Landbauforschung Volkenrode 52:43–52

    CAS  Google Scholar 

  • Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387

    Article  CAS  Google Scholar 

  • Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Janina Urban (Laboratory of Agricultural Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences) for her laboratory work. Research was conducted as part of the interdisciplinary project “Water absorbing geocomposites – innovative technologies supporting plant growth” (UDA-POIG.01.03.01-00-181/09-00) carried out under the Operational Programme Innovative Economy co-financed by the European Union from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata P. Oksińska.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksińska, M.P., Magnucka, E.G., Lejcuś, K. et al. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria. Environ Sci Pollut Res 23, 5969–5977 (2016). https://doi.org/10.1007/s11356-016-6130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6130-6

Keywords

Navigation