Skip to main content
Log in

Reduced tensile properties of bacterial cellulose membranes after an accelerated composite temperature/humidity cyclic assay

  • Brief Communication
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) membranes are an excellent ecopolymer product that has been proposed for many applications, including acoustic, biomedical, and fabrics. However, those uses require the membranes’ exposure to environmental conditions related to shelf storage, washing, or excess of humidity that are not usually evaluated when developing new materials. In this work, we investigated the effect of high and low temperature, and high humidity accelerated exposure on the physical and mechanical properties of BC membranes prepared from Kombucha fermentation. We prepared BC membranes following standard protocols and subjected them to a composite temperature/humidity accelerated cyclic assay. The mechanical and physical properties of the membranes were measured before and after the assay. We found that the ultimate tensile strength, elastic modulus, and elongation at break significantly changed after the assay. We also observed a few morphology changes, but no changes in the DSC and IR determinations. Our results suggest that environmental tests should be performed in every biodegradable polymer according to their intended use to determine their applications fully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

All data generated or analyzed during this study are included in this published article. All datasets generated are available from corresponding author on reasonable request.

References

  1. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie - Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  2. Tan HT, Corbin KR, Fincher GB (2016) Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls. Front Plant Sci 7:1–18. https://doi.org/10.3389/fpls.2016.01854

    Article  Google Scholar 

  3. Delgado-Aguilar M, González I, Tarrés Q et al (2015) Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResources 10:5330–5344. https://doi.org/10.15376/biores.10.3.5330-5344

    Article  Google Scholar 

  4. Moon D, Sagisaka M, Tahara K, Tsukahara K (2017) Progress towards sustainable production: environmental, economic, and social assessments of the cellulose nanofiber production process. Sustain 9. https://doi.org/10.3390/su9122368

  5. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  6. Greenwalt CJ, Steinkraus KH, Ledford RA (2000) Kombucha, the fermented tea: Microbiology, composition, and claimed health effects

  7. Dufresne C, Farnworth E (2000) Tea, Kombucha, and health: a review. Food Res Int 33:409–421. https://doi.org/10.1016/S0963-9969(00)00067-3

    Article  CAS  Google Scholar 

  8. Sun TY, Li JS, Chen C (2015) Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. J Food Drug Anal 23:709–718. https://doi.org/10.1016/j.jfda.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  9. Gaggìa F, Baffoni L, Galiano M et al (2019) Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 11:1–22. https://doi.org/10.3390/nu11010001

    Article  CAS  Google Scholar 

  10. Chen C, Liu BY (2000) Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol 89:834–839. https://doi.org/10.1046/j.1365-2672.2000.01188.x

    Article  CAS  PubMed  Google Scholar 

  11. Zhu C, Li F, Zhou X et al (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res - Part A 102:1548–1557. https://doi.org/10.1002/jbm.a.34796

    Article  CAS  Google Scholar 

  12. May A, Narayanan S, Alcock J et al (2019) Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 2019:1–22. https://doi.org/10.7717/peerj.7565

    Article  Google Scholar 

  13. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. https://doi.org/10.1016/j.carbpol.2008.11.009

    Article  CAS  Google Scholar 

  14. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583. https://doi.org/10.1111/j.1365-2672.2009.04226.x

    Article  CAS  PubMed  Google Scholar 

  15. Castro C, Zuluaga R, Putaux JL et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. https://doi.org/10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  16. Nishi Y, Uryu M, Yamanaka S et al (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose - Part 2 Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001. https://doi.org/10.1007/BF00584917

    Article  CAS  Google Scholar 

  17. Gorgieva S, Trček J (2019) Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9:1–20. https://doi.org/10.3390/nano9101352

    Article  CAS  Google Scholar 

  18. Santos SM, Carbajo JM, Gómez N et al (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52:5882–5893. https://doi.org/10.1007/s10853-017-0824-0

    Article  CAS  Google Scholar 

  19. Chan CK, Shin J, Jiang SXK (2018) Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Cloth Text Res J 36:33–44. https://doi.org/10.1177/0887302X17737177

    Article  Google Scholar 

  20. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. https://doi.org/10.1007/s10570-016-0881-6

    Article  CAS  Google Scholar 

  21. Dima SO, Panaitescu DM, Orban C et al (2017) Bacterial nanocellulose from side-streams of kombucha beverages production: preparation and physical-chemical properties. Polymers (Basel) 9:374. https://doi.org/10.3390/polym9080374

    Article  CAS  PubMed Central  Google Scholar 

  22. Tabarsa T, Sheykhnazari S, Ashori A et al (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340. https://doi.org/10.1016/j.ijbiomac.2017.03.108

    Article  CAS  PubMed  Google Scholar 

  23. Maréchal Y, Chanzy H (2000) The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196. https://doi.org/10.1016/S0022-2860(99)00389-0

    Article  Google Scholar 

  24. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173–180. https://doi.org/10.1016/j.carbpol.2010.04.052

    Article  CAS  Google Scholar 

  25. Tomé LC, Brandão L, Mendes AM et al (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211. https://doi.org/10.1007/s10570-010-9457-z

    Article  CAS  Google Scholar 

  26. Chandrasekaran PT, Bari NK, Sinha S (2017) Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth. Cellulose 24:4367–4381. https://doi.org/10.1007/s10570-017-1419-2

    Article  CAS  Google Scholar 

  27. Phisalaphong M, Suwanmajo T, Sangtherapitikul P (2008) Novel nanoporous membranes from regenerated bacterial cellulose. J Appl Polym Sci 107:292–299. https://doi.org/10.1002/app.27118

    Article  CAS  Google Scholar 

  28. Bellamy LJ (1975) Alkanes. In: Bellamy L (ed) The infra-red spectra of complex molecules. Springer, Dordrecht, pp 13–14

    Chapter  Google Scholar 

  29. Illa MP, Sharma CS, Khandelwal M (2019) Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J Mater Sci 54:12024–12035. https://doi.org/10.1007/s10853-019-03737-9

    Article  CAS  Google Scholar 

  30. Oliveira RL, Vieira JG, Barud HS et al (2015) Synthesis and characterization of methylcellulose produced from bacterial cellulose under heterogeneous condition. J Braz Chem Soc 26:1861–1870. https://doi.org/10.5935/0103-5053.20150163

    Article  CAS  Google Scholar 

  31. Yildirim N, Shaler S (2017) A study on thermal and nanomechanical performance of cellulose nanomaterials (CNs). Materials (Basel) 10. https://doi.org/10.3390/ma10070718

  32. Barud HS, Ribeiro CA, Crespi MS et al (2007) Thermal characterization of bacterial cellulose-phosphate composite membranes. J Therm Anal Calorim 87:815–818. https://doi.org/10.1007/s10973-006-8170-5

    Article  CAS  Google Scholar 

  33. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. https://doi.org/10.1007/s10924-012-0541-3

    Article  CAS  Google Scholar 

  34. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. https://doi.org/10.1016/j.carbpol.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  35. Cazón P, Velazquez G, Vázquez M (2020) Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocoll 99:105323. https://doi.org/10.1016/j.foodhyd.2019.105323

    Article  CAS  Google Scholar 

  36. van Hengel C (2001) Stress-strain curve. Fibre Met Laminates:101–109. https://doi.org/10.1007/978-94-010-0995-9_7

  37. Hibbeler RC (2016) Mechanics of Materials, 10th ed. Pearson

  38. Luo Z, Liu J, Lin H et al (2020) In situ fabrication of nano zno/bcm biocomposite based on ma modified bacterial cellulose membrane for antibacterial and wound healing. Int J Nanomedicine 15:1–15. https://doi.org/10.2147/IJN.S231556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maier C, Calafut T (1998) Polypropylene data collection. In: Polypropylene. Elsevier, pp 268–372

  40. Lee H, Ozaki A, Lee M, Yamamoto T (2020) Humidity control effect of vapor-permeable walls employing hygroscopic insulation material. Indoor Air 30:346–360. https://doi.org/10.1111/ina.12622

    Article  CAS  PubMed  Google Scholar 

  41. Moetazedian A, Gleadall A, Han X, Silberschmidt VV (2020) Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications. J Mech Behav Biomed Mater 102:103510. https://doi.org/10.1016/j.jmbbm.2019.103510

    Article  CAS  PubMed  Google Scholar 

  42. Cui X, Lee JJL, Chen WN (2019) Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-54638-5

    Article  CAS  Google Scholar 

  43. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603. https://doi.org/10.1016/j.carbpol.2012.01.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Joan Manuel Molina-Romero thanks the Mexican National Council of Science and Technology (CONACYT) and the Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) for the scholarships received.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Horacio Vieyra: Conceptualization, Methodology, Resources, Writing- Original draft preparation. Joan Manuel Molina-Romero: Investigation, Visualization. Bárbara Estefanía Arteaga-Ballesteros: Investigation, Visualization. Andrea Guevara-Morales: Supervision, Writing – reviewing and editing. Eduardo San Martín-Martínez: Resources, Writing – reviewing and editing.

Corresponding author

Correspondence to Horacio Vieyra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Romero, J.M., Arteaga-Ballesteros, B.E., Guevara-Morales, A. et al. Reduced tensile properties of bacterial cellulose membranes after an accelerated composite temperature/humidity cyclic assay. J Polym Environ 29, 2349–2358 (2021). https://doi.org/10.1007/s10924-020-02023-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02023-z

Keywords

Navigation