Skip to main content
Log in

Effects of Fiber Content and Size on the Mechanical Properties of Wheat Straw/Recycled Polyethylene Composites

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Wheat straw/recycled polyethylene composites (WRPCs) were manufactured with wheat straw fibers (WS) and recycled polyethylene (rPE) using extrusion followed by hot pressing moulding. The chemical structure and the fiber morphology of WS were analyzed by FTIR and L&W fiber tester. The influence of WS size and content on the mechanical properties, thermal stability and moisture absorption of WRPCs were investigated. The results showed that the performance of rPE based composites was certainly enhanced with the addition of WS. The WRPCs filled with long particle size and high length-to-diameter (L/D) ratio WS could obtain the optimal tensile and flexural performances. With increasing WS contents, the tensile and flexural strength of composites exhibited an increasing trend and the elongation at break decreased gradually. The strength properties of WRPCs decreased when the fiber content was over 50%. The length and content of WS had a significant influence on the moisture absorption of WRPCs. Thermogravimetric (TG) analysis found that WS size had no remarkable impact on the thermal stability of WRPCs. The scanning electron microscopy (SEM) indicated the dispersity of WS in composites increased with the decreasing of WS size, while the interfacial adhesion of WRPCs decreased gradually with the increasing of WS content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Danish BMA, Mahmood N et al (2019) Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Sci Total Environ 678:632–638

    Article  CAS  PubMed  Google Scholar 

  2. ZHAO X, LI B, NI J et al (2016) Effect of four crop straws on transformation of organic matter during sewage sludge composting. J Integr Agric 15:232–240

    Article  CAS  Google Scholar 

  3. Rocha-Meneses L, Raud M, Orupõld K et al (2019) Potential of bioethanol production waste for methane recovery. Energy 173:133–139

    Article  CAS  Google Scholar 

  4. Yu Q, Liu R, Li K et al (2019) A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew Sustain Energy Rev 107:51–58

    Article  CAS  Google Scholar 

  5. Zeng Y, Zhang J, He K (2019) Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evidence from biogas in rural China. Renew Energy 138:573–584

    Article  Google Scholar 

  6. Gao M, Wang D, Wang H et al (2019) Biogas potential, utilization and countermeasures in agricultural provinces: a case study of biogas development in Henan Province, China. Renew Sustain Energy Rev 99:191–200

    Article  Google Scholar 

  7. Wang B, Shen X, Chen S et al (2018) Distribution characteristics, resource utilization and popularizing demonstration of crop straw in southwest China: a comprehensive evaluation. Ecol Indic 93:998–1004

    Article  Google Scholar 

  8. Peng Y, Zha D, Bin G et al (2020) Effect of wheat straw oxidation on thermoplastic starch composites: Mechanical, thermal, and rheological process behaviors. J Thermoplast Compos Mater 33(5):646–658

    Article  CAS  Google Scholar 

  9. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B: Eng 44:120–127

    Article  CAS  Google Scholar 

  10. Jawaid M, Khalil HPSA (2011) Cellulosic/synthetic fiber reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18

    Article  CAS  Google Scholar 

  11. Azwa ZN, Yousif BF, Manalo AC et al (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Design 47:424–442

    Article  CAS  Google Scholar 

  12. Wang W, Yuan S, Bu F et al (2010) Wheat-Straw-HDPE Composite Produced by the Hot-pressing Method. J Thermoplast Compos Mater 24:251–261

    Article  CAS  Google Scholar 

  13. Moreno DDP, Saron C (2017) Low-density polyethylene waste/recycled wood composites. Compos Struct 176:1152–1157

    Article  Google Scholar 

  14. Ogah AO, Afiukwa JN (2013) Characterization and comparison of mechanical behavior of agro fiber-filled high-density polyethylene bio-composites. J Reinf Plast Compos 33:37–46

    Article  CAS  Google Scholar 

  15. Zhang W, Yao X, Khanal S et al (2018) A novel surface treatment for bamboo flour and its effect on the dimensional stability and mechanical properties of high density polyethylene/bamboo flour composites. Constr Build Mater 186:1220–1227

    Article  CAS  Google Scholar 

  16. Van Schoors L, Gueguen Minerbe M, Moscardelli S et al (2018) Antioxidant properties of flax fibers in polyethylene matrix composites. Ind Crops Prod 126:333–339

    Article  CAS  Google Scholar 

  17. Hossen MF, Hamdan S, Rahman MR et al (2016) Effect of clay content on the morphological, thermo-mechanical and chemical resistance properties of propionic anhydride treated jute fiber/polyethylene/nanoclay nanocomposites. Measurement 90:404–411

    Article  Google Scholar 

  18. May-Pat A, Valadez-González A, Herrera-Franco PJ (2013) Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 32:1114–1122

    Article  CAS  Google Scholar 

  19. Singleton ACN, Baillie CA, Beaumont PWR et al (2003) On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos Part B: Eng 34:519–526

    Article  CAS  Google Scholar 

  20. Mengeloglu F, Karakus K (2008) Thermal degradation, mechanical properties and morp- hology of wheat straw flour filled recycled thermoplastic composites. Sensors 8:500–519

    Article  CAS  PubMed  Google Scholar 

  21. Farhan Zafar M, Siddiqui MA (2018) Raw natural fiber reinforced polystyrene composites: effect of fiber size and content. Mater Today: Proc 5:5908–5917

    CAS  Google Scholar 

  22. Yuan Q, Wu D, Gotama J et al (2008) Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. J Thermoplast Compos Mater 21:195–208

    Article  CAS  Google Scholar 

  23. Migneault S, Koubaa A, Erchiqui F et al (2009) Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos Part A: Appl Sci Manuf 40:80–85

    Article  CAS  Google Scholar 

  24. Bahra MS, Gupta VK, Aggarwal L (2017) Effect of fiber content on mechanical properties and water absorption behaviour of pineapple/HDPE composite. Mater Today: Proc 4:3207–3214

    Google Scholar 

  25. Robertson NLM, Nychka JA, Alemaskin K et al (2013) Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. J Appl Polym Sci 130:969–980

    Article  CAS  Google Scholar 

  26. Pan MZ, Zhou DG, Bousmina M et al (2010) Effects of wheat straw fiber content and characteristics, and coupling agent concentration on the mechanical properties of wheat straw fiber-polypropylene composites. J Appl Polym Sci 113:1000–1007

    Article  CAS  Google Scholar 

  27. Noranizan IA, Ahmad I (2012) Effect of fiber content and compatibilizer on rheological, mechanical and morphological behaviors. Open J Polym Chem I:31–41

    Article  CAS  Google Scholar 

  28. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85

    Article  CAS  PubMed  Google Scholar 

  29. Nemr MHE, Shazly AA, Mubarak YMSE (2015) Composites from rice straw and high density polyethylene thermal and mechanical properties international. J Eng Sci 4:57–64

    Google Scholar 

  30. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8

    Article  CAS  Google Scholar 

  31. Cui YH, Lee S, Noruziaan B et al (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos Part A: Appl Sci Manuf 39:655–661

    Article  CAS  Google Scholar 

  32. Sun XF, Xu F, Sun RC et al (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106

    Article  CAS  PubMed  Google Scholar 

  33. Niu FF, Meng QR, Zhang LF (2018) Physicochemical properties of different particle sized carrot dietary fiber and its influence on starch pasting properties. J Food Sci Biotechnol 37(11):1213–1218

    Google Scholar 

  34. Bian H, Luo J, Wang R et al (2019) Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain Chem Eng 7(24):20022–20031

    Article  CAS  Google Scholar 

  35. Mohanty S, Verma S, Nayak S (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66:538–547

    Article  CAS  Google Scholar 

  36. Zabihzadeh SM (2010) Influence of plastic type and compatibilizer on thermal properties of wheat straw flour/thermoplastic composites. J Thermoplast Compos Mater 23:817–826

    Article  CAS  Google Scholar 

  37. Kim HS, Kim S, Kim HJ et al (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188

    Article  CAS  Google Scholar 

  38. Sultana Mir S, Hasan M, Hasan SM et al (2015) Effect of chemical treatment on the properties of coir fiber reinforced polypropylene and polyethylene composites. Polym Compos 38(7):1259–1265

    Article  CAS  Google Scholar 

  39. Chollakup R, Tantatherdtam R, Ujjin S et al (2011) Pineapple leaf fiber reinforced thermoplastic composites: Effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960

    Article  CAS  Google Scholar 

  40. Yemele MCN, Koubaa A, Cloutier A et al (2010) Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Compos Part A: Appl Sci Manuf 41:131–137

    Article  CAS  Google Scholar 

  41. Adhikary KB, Pang S, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B: Eng 39:807–815

    Article  CAS  Google Scholar 

  42. Bouafif H, Koubaa A, Perré P et al (2009) Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos Part A: Appl Sci Manuf 40:1975–1981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge financial supports from Natural Science Foundation of Shaanxi Province (Grant No. 2015JM3080), Anhui major science and technology projects (Grant No. 17030701019), and the Foundation of Xi’an Beilin District (Grant No. GX1712). We are thankful to the Faculty of Printing, Packing Engineering and Digital Media Technology, Xi’an University of Technology for the technical supports during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Zhang.

Ethics declarations

Conflict of interest

The authors deny any conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Z., Cong, L. et al. Effects of Fiber Content and Size on the Mechanical Properties of Wheat Straw/Recycled Polyethylene Composites. J Polym Environ 28, 1833–1840 (2020). https://doi.org/10.1007/s10924-020-01733-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01733-8

Keywords

Navigation