Skip to main content
Log in

Green Microcomposites from Renewable Resources: Effect of Seaweed (Undaria pinnatifida) as Filler on Corn Starch–Chitosan Film Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Natural seaweed microparticles obtained from Undaria pinnatifida waste (A) were used as fillers in thermoplastic starch (TPS)–chitosan (CH) blend in order to obtain microcomposites films for application in sustainable agriculture. The adequate proportion of both polymers was optimized with regards their mechanical, barrier, water interaction and morphological properties. Then, the effect of different content of seaweed on microcomposites properties was investigated. The seaweed used showed good interaction with the TPS–CH matrix. Its addition produced an increase in the tensile strength and a slight increase in the elongation at break. Contents of 10% of A lead to a more heterogeneous structure with the formation of aggregates. Low contents of A reduced the mobility of the polymer chains resulting in a lower moisture content and higher Tg, although the WVP increased with the content of A. The improvements achieved with microcomposites were finally discussed under the light of new agricultural mulch films regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Briassoulis D (2007) Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym Degrad Stab 92:1115–1132. https://doi.org/10.1016/j.polymdegradstab.2007.01.024

    Article  CAS  Google Scholar 

  2. Wortman SE, Kadoma I, Crandall MD (2015) Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops. Sci Hortic (Amsterdam) 193:209–217. https://doi.org/10.1016/J.SCIENTA.2015.07.019

    Article  CAS  Google Scholar 

  3. Pablo IA, Valiña A (2003) Cultivo bajo cubierta Zona sur de la provincia del Neuquén

  4. Finkenstadt VL, Tisserat B (2010) Poly(lactic acid) and Osage orange wood fiber composites for agricultural mulch films. Ind Crops Prod 31:316–320. https://doi.org/10.1016/J.INDCROP.2009.11.012

    Article  CAS  Google Scholar 

  5. Mitrus M (2010) TPS and its nature. Thermoplastic starch. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 77–104

    Google Scholar 

  6. Reis MO, Olivato JB, Bilck AP et al (2018) Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Ind Crops Prod 112:481–487. https://doi.org/10.1016/J.INDCROP.2017.12.045

    Article  CAS  Google Scholar 

  7. Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(ε-Caprolactone) (PCL) and poly(lactic acid) (PLA). J Polym Environ 23:83–89. https://doi.org/10.1007/s10924-014-0666-7

    Article  CAS  Google Scholar 

  8. Akrami M, Ghasemi I, Azizi H et al (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/J.CARBPOL.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  9. Bonilla J, Talón E, Atarés L et al (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J Food Eng 118:271–278. https://doi.org/10.1016/J.JFOODENG.2013.04.008

    Article  CAS  Google Scholar 

  10. Malerba M, Cerana R (2018) Recent advances of chitosan applications in plants. Polymers (Basel) 10:118. https://doi.org/10.3390/polym10020118

    Article  CAS  Google Scholar 

  11. Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev 35:569–588. https://doi.org/10.1007/s13593-014-0252-3

    Article  CAS  Google Scholar 

  12. Xoca-Orozco L-Á, Aguilera-Aguirre S, Vega-Arreguín J et al (2018) Activation of the phenylpropanoid biosynthesis pathway reveals a novel action mechanism of the elicitor effect of chitosan on avocado fruit epicarp. Food Res Int. https://doi.org/10.1016/J.FOODRES.2018.12.023

    Article  PubMed  Google Scholar 

  13. Singh A, Gairola K, Upadhyay V, Kumar J (2018) Chitosan: an elicitor and antimicrobial bio-resource in plant protection. Agric Rev 39:163–168

    Google Scholar 

  14. Merino D, Mansilla AY, Casalongué CA, Alvarez VA (2018) Preparation, characterization, and in vitro testing of nanoclay antimicrobial activities and elicitor capacity. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.8b00049

    Article  PubMed  Google Scholar 

  15. Mansilla AY, Albertengo L, Rodríguez MS et al (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol 97:6957–6966. https://doi.org/10.1007/s00253-013-4993-8

    Article  CAS  PubMed  Google Scholar 

  16. Terrile MC, Mansilla AY, Albertengo L et al (2015) Nitric-oxide-mediated cell death is triggered by chitosan in Fusarium eumartii spores. Pest Manag Sci 71:668–674. https://doi.org/10.1002/ps.3814

    Article  CAS  PubMed  Google Scholar 

  17. Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic (Amsterdam) 196:49–65. https://doi.org/10.1016/j.scienta.2015.09.031

    Article  CAS  Google Scholar 

  18. Rahman M, Mukta JA, Sabir AA et al (2018) Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS ONE 13:e0203769. https://doi.org/10.1371/journal.pone.0203769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu L, Geelen D (2018) Developing biostimulants from agro-food and industrial by-products. Front Plant Sci 9:1567. https://doi.org/10.3389/fpls.2018.01567

    Article  PubMed  PubMed Central  Google Scholar 

  20. Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic (Amsterdam) 196:39–48. https://doi.org/10.1016/J.SCIENTA.2015.09.012

    Article  CAS  Google Scholar 

  21. Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327. https://doi.org/10.1016/j.ijbiomac.2015.10.081

    Article  CAS  PubMed  Google Scholar 

  22. Bulota M, Budtova T (2015) PLA/algae composites: morphology and mechanical properties. Compos Part A Appl Sci Manuf 73:109–115. https://doi.org/10.1016/J.COMPOSITESA.2015.03.001

    Article  CAS  Google Scholar 

  23. Chiellini E, Cinelli P, Ilieva VI, Martera M (2008) Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromolcules 9:1007–1013. https://doi.org/10.1021/bm701041e

    Article  CAS  Google Scholar 

  24. Garrido T, Peñalba M, de la Caba K, Guerrero P (2016) Injection-manufactured biocomposites from extruded soy protein with algae waste as a filler. Compos Part B Eng 86:197–202. https://doi.org/10.1016/J.COMPOSITESB.2015.09.058

    Article  CAS  Google Scholar 

  25. Torres S, Navia R, Campbell Murdy R et al (2015) Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): processing and plasticization. ACS Sustain Chem Eng 3:614–624. https://doi.org/10.1021/sc500753h

    Article  CAS  Google Scholar 

  26. Jumaidin R, Sapuan SM, Jawaid M et al (2017) Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites. Int J Biol Macromol 99:265–273. https://doi.org/10.1016/j.ijbiomac.2017.02.092

    Article  CAS  PubMed  Google Scholar 

  27. Stawski D (2008) New determination method of amylose content in potato starch. Food Chem 110:777–781. https://doi.org/10.1016/j.foodchem.2008.03.009

    Article  CAS  Google Scholar 

  28. De la Paz N, Pérez D, Fernández M et al (2013) Evaluación viscosimétrica del quitosano derivado de la quitina de langosta. Rev Iberoam Polímeros 14(2):84–91

    Google Scholar 

  29. Lavertu M, Xia Z, Serreqi AN et al (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32:1149–1158. https://doi.org/10.1016/S0731-7085(03)00155-9

    Article  CAS  PubMed  Google Scholar 

  30. Balboa EM, Conde E, Moure A et al (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785. https://doi.org/10.1016/J.FOODCHEM.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  31. Britt K, Kangas P (2016) A preliminary assessment of dried algal biomass as a filler material in concrete. J Algal Biomass Util 7:147–152

    Google Scholar 

  32. American Society for Testing and Materials (2002) ASTM E96-00e1—Standard test methods for water vapor transmission of materials. ASTM, West Conshohocken, PA

  33. Woggum T, Sirivongpaisal P, Wittaya T (2014) Properties and characteristics of dual-modified rice starch based biodegradable films. Int J Biol Macromol 67:490–502. https://doi.org/10.1016/J.IJBIOMAC.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  34. ISO 9050:2003 (2003) Glass in building—determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors

  35. Luchese CL, Pavoni JMF, dos Santos NZ et al (2018) Effect of chitosan addition on the properties of films prepared with corn and cassava starches. J Food Sci Technol 55:2963–2973. https://doi.org/10.1007/s13197-018-3214-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pelissari FM, Grossmann MVE, Yamashita F, Pineda EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch–chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504. https://doi.org/10.1021/jf9002363

    Article  CAS  PubMed  Google Scholar 

  37. Bourtoom T (2008) Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Songklanakarin J Sci Technol 30:149–155

    Google Scholar 

  38. Ren L, Yan X, Zhou J et al (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643. https://doi.org/10.1016/j.ijbiomac.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  39. Mei J, Yuan Y, Wu Y, Li Y (2013) Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. Int J Biol Macromol 57:17–21. https://doi.org/10.1016/J.IJBIOMAC.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  40. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film. LWT Food Sci Technol 41:1633–1641. https://doi.org/10.1016/J.LWT.2007.10.014

    Article  CAS  Google Scholar 

  41. Mollah MZI, Akter N, Quader FB et al (2016) Biodegradable colour polymeric film (starch-chitosan) development: characterization for packaging materials. Open J Org Polym Mater 06:11–24. https://doi.org/10.4236/ojopm.2016.61002

    Article  CAS  Google Scholar 

  42. Mathew S, Brahmakumar M, Abraham TE (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 82:176–187. https://doi.org/10.1002/bip.20480

    Article  CAS  PubMed  Google Scholar 

  43. Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342. https://doi.org/10.1016/J.CARBPOL.2010.11.041

    Article  CAS  Google Scholar 

  44. Dang KM, Yoksan R (2016) Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohydr Polym 150:40–47. https://doi.org/10.1016/J.CARBPOL.2016.04.113

    Article  CAS  PubMed  Google Scholar 

  45. Valencia-Sullca C, Vargas M, Atarés L, Chiralt A (2018) Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocoll 75:107–115. https://doi.org/10.1016/J.FOODHYD.2017.09.008

    Article  CAS  Google Scholar 

  46. Lozano-Navarro J, Díaz-Zavala N, Velasco-Santos C et al (2018) Chitosan-starch films with natural extracts: physical, chemical, morphological and thermal properties. Materials (Basel) 11:120. https://doi.org/10.3390/ma11010120

    Article  CAS  PubMed Central  Google Scholar 

  47. Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520. https://doi.org/10.1016/J.FOODHYD.2011.02.009

    Article  Google Scholar 

  48. Merino D, Gutierrez T, Alvarez VA (2019) Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. J Polym Environ 27:97–105

    Article  CAS  Google Scholar 

  49. Debandi MV, Bernal C, Francois NJ (2016) Development of biodegradable films based on chitosan/glycerol blends suitable for biomedical applications. J Tissue Sci Eng 7:1–9

    Google Scholar 

  50. Aouada FA, Mattoso LHC, Longo E (2011) New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind Crops Prod 34:1502–1508. https://doi.org/10.1016/j.indcrop.2011.05.003

    Article  CAS  Google Scholar 

  51. Mendes JF, Paschoalin R, Carmona VB et al (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458. https://doi.org/10.1016/J.CARBPOL.2015.10.093

    Article  CAS  PubMed  Google Scholar 

  52. Yan C, Wang R, Wan J et al (2016) Cellulose/microalgae composite films prepared in ionic liquids. Algal Res 20:135–141. https://doi.org/10.1016/J.ALGAL.2016.09.024

    Article  Google Scholar 

  53. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Eclética Química 29:57–64. https://doi.org/10.1590/S0100-46702004000200009

    Article  CAS  Google Scholar 

  54. Epure V, Griffon M, Pollet E, Avérous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym 83:947–952. https://doi.org/10.1016/J.CARBPOL.2010.09.003

    Article  CAS  Google Scholar 

  55. Bof MJ, Bordagaray VC, Locaso DE, García MA (2015) Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll 51:281–294. https://doi.org/10.1016/J.FOODHYD.2015.05.018

    Article  CAS  Google Scholar 

  56. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci Part B Polym Phys 47:1069–1077. https://doi.org/10.1002/polb.21711

    Article  CAS  Google Scholar 

  57. Chen L, Tang C, Ning N et al (2009) Preparation and properties of chitosan/lignin composite films. Chin J Polym Sci 27:739. https://doi.org/10.1142/S0256767909004448

    Article  CAS  Google Scholar 

  58. Niazi MBK, Broekhuis AA (2015) Surface photo-crosslinking of plasticized thermoplastic starch films. Eur Polym J 64:229–243. https://doi.org/10.1016/j.eurpolymj.2015.01.027

    Article  CAS  Google Scholar 

  59. Jumaidin R, Sapuan SM, Jawaid M et al (2016) Effect of seaweed on physical properties of thermoplastic sugar palm starch/agar composites. J Mech Eng Sci 10:2214–2225. https://doi.org/10.15282/jmes.10.3.2016.1.0207

    Article  CAS  Google Scholar 

  60. Escamilla-García M, Reyes-Basurto A, García-Almendárez B et al (2017) Modified starch-chitosan edible films: physicochemical and mechanical characterization. Coatings 7:224. https://doi.org/10.3390/coatings7120224

    Article  CAS  Google Scholar 

  61. Talón E, Trifkovic KT, Nedovic VA et al (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 157:1153–1161. https://doi.org/10.1016/J.CARBPOL.2016.10.080

    Article  PubMed  Google Scholar 

  62. Barghini A, Ivanova VI, Imam SH, Chiellini E (2010) Poly-(ε-caprolactone) (PCL) and poly(hydroxy-butyrate) (PHB) blends containing seaweed fibers: morphology and thermal-mechanical properties. J Polym Sci Part A Polym Chem 48:5282–5288. https://doi.org/10.1002/pola.24327

    Article  CAS  Google Scholar 

  63. Iannace S, Nocilla G, Nicolais L (1999) Biocomposites based on sea algae fibers and biodegradable thermoplastic matrices. J Appl Polym Sci 73:583–592. https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4%3c583:AID-APP14%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  64. Kadam SU, Pankaj SK, Tiwari BK et al (2015) Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum nodosum extract. Food Packag Shelf Life 6:68–74. https://doi.org/10.1016/J.FPSL.2015.09.003

    Article  Google Scholar 

  65. Rhim J-W (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86:691–699. https://doi.org/10.1016/J.CARBPOL.2011.05.010

    Article  CAS  Google Scholar 

  66. Sartore L, Vox G, Schettini E (2013) Preparation and performance of novel biodegradable polymeric materials based on hydrolyzed proteins for agricultural application. J Polym Environ 21:718–725. https://doi.org/10.1007/s10924-013-0574-2

    Article  CAS  Google Scholar 

  67. Robinson D, Brae B (1991) Developments in plastic structures and materials for horticultural crops. ASPAC, Food Fertil Technol Center

  68. Vox G, Santagata G, Malinconico M et al (2013) Biodegradable films and spray coatings as eco-friendly alternative to petro-chemical derived mulching films. J Agric Eng. https://doi.org/10.4081/jae.2013.286

    Article  Google Scholar 

  69. Wang HMD, Chen CC, Huynh P, Chang JS (2015) Exploring the potential of using algae in cosmetics. Bioresour Technol 184:355–362. https://doi.org/10.1016/j.biortech.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  70. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2017) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Venkatesan J, Lowe B, Anil S et al (2015) Seaweed polysaccharides and their potential biomedical applications. Starch/Staerke 67:381–390. https://doi.org/10.1002/star.201400127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Research Council (CONICET), National Agency for Scientific and Technical Promotion (ANPCyT) and the National University of Mar del Plata (UNMdP) for the financial support and to the Dr. Diego Navarro, for the determination of starch molecular weight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Merino.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merino, D., Alvarez, V.A. Green Microcomposites from Renewable Resources: Effect of Seaweed (Undaria pinnatifida) as Filler on Corn Starch–Chitosan Film Properties. J Polym Environ 28, 500–516 (2020). https://doi.org/10.1007/s10924-019-01622-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01622-9

Keywords

Navigation