Skip to main content
Log in

Reuse of Different Agroindustrial Wastes: Pinhão and Pecan Nutshells Incorporated into Biocomposites Using Thermocompression

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The development of cassava starch-based biocomposites incorporated with pecan nutshells and pinhão shells by thermocompression process was evaluated. The biocomposites were characterized in terms of thickness, bulk density, hydrophilicity, water absorption capacity (WAC), morphology, thermal and mechanical properties. The samples with residues incorporation showed lower WAC when compared to the control ones, for all evaluated times. Biocomposites containing the pinhão shells showed hydrophobic character, measured by the contact angle (greater than 90°). More irregularities were evidenced by the morphological analysis for the biocomposites added with pecan nutshells. The thermal stability of the biocomposites was influenced by the high lignin content in the residues. Regarding the mechanical properties, in both tensile and flexural tests, biocomposites containing pecan nutshells presented the lowest values of stress at break and modulus of elasticity. When compared to the control sample, the composites added with the pinhão shells had mechanical similar properties, differently from the result for samples incorporated with pecan nutshells that presented less resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Landim APM, Bernardo CO, Martins IBA et al (2016) Sustainability concerning food packaging in Brazil. Polímeros 26:82–92. https://doi.org/10.1590/0104-1428.1897

    Article  Google Scholar 

  2. Moustafa H, Youssef AM, Darwish NA, Abou-Kandil AI (2019) Eco-friendly polymer composites for green packaging: future vision and challenges. Composites Part B Eng 172:16–25. https://doi.org/10.1016/j.compositesb.2019.05.048

    Article  CAS  Google Scholar 

  3. Dunne R, Desai D, Sadiku R, Jayaramudu J (2016) A review of natural fibres, their sustainability and automotive applications. J Reinf Plast Compos 35:1041–1050. https://doi.org/10.1177/0731684416633898

    Article  CAS  Google Scholar 

  4. Stevens ES, Klamczynski A, Glenn GM (2010) Starch-lignin foams. Express Polym Lett 4:311–320. https://doi.org/10.3144/expresspolymlett.2010.39

    Article  CAS  Google Scholar 

  5. Kale G, Kijchavengkul T, Auras R et al (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277. https://doi.org/10.1002/mabi.200600168

    Article  CAS  PubMed  Google Scholar 

  6. Salgado PR, Schmidt VC, Ortiz SEM et al (2008) Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. J Food Eng 85:435–443. https://doi.org/10.1016/j.jfoodeng.2007.08.005

    Article  CAS  Google Scholar 

  7. Vercelheze AES, Oliveira ALM, Rezende MI et al (2013) Physical properties, photo- and bio-degradation of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. J Polym Environ 21:266–274. https://doi.org/10.1007/s10924-012-0455-0

    Article  CAS  Google Scholar 

  8. Mali S, Grossmann MVE, Yamashita F (2010) Starch films: production, properties and potential of utilization. Semin Agrar 31:137–156. https://doi.org/10.5433/1679-0359.2010v31n1p137

    Article  CAS  Google Scholar 

  9. Regazzi A, Teil M, Dumont PJJ et al (2019) Microstructural and mechanical properties of biocomposites made of native starch granules and wood fibers. Compos Sci Technol 182:107755. https://doi.org/10.1016/j.compscitech.2019.107755

    Article  CAS  Google Scholar 

  10. Kargarzadeh H, Johar N, Ahmad I (2017) Starch biocomposite film reinforced by multiscale rice husk fiber. Compos Sci Technol 151:147–155. https://doi.org/10.1016/j.compscitech.2017.08.018

    Article  CAS  Google Scholar 

  11. Wang J, Qian W, He Y et al (2017) Reutilization of discarded biomass for preparing functional polymer materials. Waste Manag 65:11–21. https://doi.org/10.1016/j.wasman.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  12. Langmaier F, Mokrejs P, Kolomaznik K, Mladek M (2008) Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag 28:549–556. https://doi.org/10.1016/j.wasman.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Boontima B, Noomhorm A, Puttanlek C et al (2015) Mechanical properties of sugarcane bagasse fiber-reinforced soy based biocomposites. J Polym Environ 23:97–106. https://doi.org/10.1007/s10924-014-0679-2

    Article  CAS  Google Scholar 

  14. Engel JB, Ambrosi A, Tessaro IC (2019) Development of a cassava starch—based foam incorporated with grape stalks using an experimental design. J Polym Environ.https://doi.org/10.1007/s10924-019-01566-0

    Article  Google Scholar 

  15. Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin

    Book  Google Scholar 

  16. Pelizer LH, Pontieri MH, Moraes IDO (2007) Use of agroindustrial residues in biotechnological processes as perspective for reduction of environmental impact. J Technol Manag Innov 2:118–127

    Google Scholar 

  17. Pinto GAS, Andrade AMR, Fraga SLP, Teixeira RB (2005) Solid state fermentation: an alternative to reuse and valorization of tropical agroindustrial residues. Embrapa Comun Técnico 102:1–5

    Google Scholar 

  18. Branco CS, Rodrigues TS, Lima ED et al (2016) Chemical constituents and biological activities of Araucaria angustifolia (Bertol.) O. Kuntze: a review. J Org Inorg Chem 2:1–10. https://doi.org/10.21767/2472-1123.100008

    Article  Google Scholar 

  19. Leite DMC, Jong EV, Noreña CZ, Brandelli A (2008) Nutritional evaluation of Araucaria angustifolia seed flour as a protein complement for growing rats. J Sci Food Agric 88:1166–1171. https://doi.org/10.1002/jsfa

    Article  CAS  Google Scholar 

  20. Cordenunsi BR, De Menezes EW, Genovese MI et al (2004) Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds. J Agric Food Chem 52:3412–3416. https://doi.org/10.1021/jf034814l

    Article  CAS  PubMed  Google Scholar 

  21. Lima EC, Royer B, Vaghetti JCP et al (2007) Adsorption of Cu(II) on Araucaria angustifolia wastes: determination of the optimal conditions by statistic design of experiments. J Hazard Mater 140:211–220. https://doi.org/10.1016/j.jhazmat.2006.06.073

    Article  CAS  PubMed  Google Scholar 

  22. Spada JC, Luchese CL, Tessaro IC (2017) Potential of pinhão coat as constituents of starch based films using modification techniques. J Polym Environ 26:2686–2697. https://doi.org/10.1007/s10924-017-1158-3

    Article  CAS  Google Scholar 

  23. Wakeling LT, Mason RL, D’Arcy BR, Caffin NA (2001) Composition of pecan cultivars Wichita and Western Schley [Carya illinoinensis (Wangenh.) K. Koch] grown in Australia. J Agric Food Chem 49:1277–1281. https://doi.org/10.1021/jf000797d

    Article  CAS  PubMed  Google Scholar 

  24. Swink J (1996) Pecans as a “young” ingredient. Food Tech Eur 3:75–76

    Google Scholar 

  25. Oro T, Ogliari PJ, de Amboni RD et al (2008) Evaluación de la calidad durante el almacenamiento de nueces Pecán [Carya illinoinensis (Wangenh.) C. Koch] acondicionadas en diferentes envases. Grasas Aceites 59:132–138. https://doi.org/10.3989/gya.2008.v59.i2.501

    Article  CAS  Google Scholar 

  26. Shahidi F, Miraliakbaki H (2005) Tree nut oils. In: SHAHIDI, F. Bailey’s industrial oil and fat products: specialty oils & protects, 6 edn, v.3, EUA. Wiley

  27. Porto LCS, da Silva J, de Barros Falcão Ferraz A et al (2013) Evaluation of acute and subacute toxicity and mutagenic activity of the aqueous extract of pecan shells [Carya illinoinensis (Wangenh.) K. Koch]. Food Chem Toxicol 59:579–585. https://doi.org/10.1016/j.fct.2013.06.048

    Article  CAS  PubMed  Google Scholar 

  28. Silva MO, Baptista ATA, Camacho FP et al (2015) Development of cereal bar using waste extract of soybeans with addition of powder shell pecan. Rev Tecnológica 247–255

  29. De Costa PD, Furmanski LM, Dominguini L (2015) Production, characterization and application of activated carbon from nutshell for adsorption of methylene blue. Rev Virtual Quim 7:1272–1285. https://doi.org/10.5935/1984-6835.20150070

    Article  CAS  Google Scholar 

  30. Sánchez-Acosta D, Rodriguez-Uribe A, Álvarez-Chávez CR et al (2019) Physicochemical characterization and evaluation of pecan nutshell as biofiller in a matrix of poly(lactic acid). J Polym Environ 27:521–532. https://doi.org/10.1007/s10924-019-01374-6

    Article  CAS  Google Scholar 

  31. Agustin-Salazar S, Cerruti P, Medina-Juárez L et al (2018) Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. Int J Biol Macromol 115:727–736. https://doi.org/10.1016/j.ijbiomac.2018.04.120

    Article  CAS  PubMed  Google Scholar 

  32. Álvarez-Chávez CR, Sánchez-Acosta DL, Encinas-Encinas JC et al (2017) Characterization of extruded poly(lactic acid)/pecan nutshell biocomposites. Int J Polym Sci 2017:13–17. https://doi.org/10.1155/2017/3264098

    Article  CAS  Google Scholar 

  33. Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23:147–161. https://doi.org/10.1016/j.indcrop.2005.05.004

    Article  CAS  Google Scholar 

  34. Versino F, López OV, García MA (2015) Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Ind Crops Prod 65:79–89. https://doi.org/10.1016/j.indcrop.2014.11.054

    Article  CAS  Google Scholar 

  35. Otoni CG, Lodi BD, Lorevice MV et al (2018) Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Ind Crops Prod 121:66–72. https://doi.org/10.1016/j.indcrop.2018.05.003

    Article  CAS  Google Scholar 

  36. Chantawee K, Riyajan SA (2018) Carboxylated styrene-butadiene rubber adhesion for biopolymer product- based from cassava starch and sugarcane leaves fiber. Ind Crops Prod 125:639–647. https://doi.org/10.1016/j.indcrop.2018.09.039

    Article  CAS  Google Scholar 

  37. Hernández D, Fernández-Puratich H, Rebolledo-Leiva R et al (2019) Evaluation of sustainable manufacturing of pellets combining wastes from olive oil and forestry industries. Ind Crops Prod 134:338–346. https://doi.org/10.1016/j.indcrop.2019.04.015

    Article  CAS  Google Scholar 

  38. Guna V, Ilangovan M, Hu C et al (2019) Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Ind Crops Prod 131:25–31. https://doi.org/10.1016/j.indcrop.2019.01.011

    Article  CAS  Google Scholar 

  39. AOAC (2005) Official method of analysis. Association of Official Analytical Chemists, Maryland

    Google Scholar 

  40. Luchese CL, Abdalla VF, Spada JC, Tessaro IC (2018) Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloid 82:209–218. https://doi.org/10.1016/j.foodhyd.2018.04.010

    Article  CAS  Google Scholar 

  41. Pavoni JMF, Luchese CL, Tessaro IC (2019) Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int J Biol Macromol 138:693–703. https://doi.org/10.1016/j.ijbiomac.2019.07.089

    Article  CAS  PubMed  Google Scholar 

  42. ABNT (1999) Associação Brasileira de Normas Técnicas. NBR NM-ISO 535. Papel e cartão—Determinação da capacidade de absorção de água—Método de Cobb

  43. Luchese CL, Abdalla VF, Spada JC, Tessaro IC (2018) Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloid 82:209–218. https://doi.org/10.1016/j.foodhyd.2018.04.010

    Article  CAS  Google Scholar 

  44. ASTM (2003) American Society for Testing and Materials. D790-03-standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulation materials (D 790–03), pp 1–11

  45. Dórame-Miranda RF, Gámez-Meza N, Medina-Juárez L et al (2019) Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydr Polym 207:91–99. https://doi.org/10.1016/j.carbpol.2018.11.067

    Article  CAS  PubMed  Google Scholar 

  46. Martínez-Casillas DC, Mascorro-Gutiérrez I, Arreola-Ramos CE et al (2019) A sustainable approach to produce activated carbons from pecan nutshell waste for environmentally friendly supercapacitors. Carbon N Y 148:403–412. https://doi.org/10.1016/j.carbon.2019.04.017

    Article  CAS  Google Scholar 

  47. Debiagi F, Mali S, Grossmann MVE, Yamashita F (2011) Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Braz Arch Biol Technol 54:1043–1052. https://doi.org/10.1590/S1516-89132011000500023

    Article  CAS  Google Scholar 

  48. Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crops Prod 109:619–626. https://doi.org/10.1016/j.indcrop.2017.09.020

    Article  CAS  Google Scholar 

  49. Machado CM, Benelli P, Tessaro IC (2017) Sesame cake incorporation on cassava starch foams for packaging use. Ind Crops Prod 102:115–121. https://doi.org/10.1016/j.indcrop.2017.03.007

    Article  CAS  Google Scholar 

  50. Vercelheze AES, Oliveira ALM, Rezende MI et al (2012) Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. J Polym Environ 87:1302–1310. https://doi.org/10.1007/s10924-012-0455-0

    Article  CAS  Google Scholar 

  51. Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2014) Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr Polym 110:70–77. https://doi.org/10.1016/j.carbpol.2014.03.067

    Article  CAS  PubMed  Google Scholar 

  52. Shogren R, Lawton J, Doane W, Tiefenbacher K (1998) Structure and morphology of baked starch foams. Polymer 39:6649–6655. https://doi.org/10.1016/S0032-3861(97)10303-2

    Article  CAS  Google Scholar 

  53. Marengo VA, Vercelheze AES, Mali S (2013) Biodegradable composites based on cassava starch and waste from agro-industry. Quim Nov 36:680–685

    Article  CAS  Google Scholar 

  54. Daudt RM, Sinrod AJG, Avena-Bustillos RJ et al (2017) Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocolloid 71:60–67. https://doi.org/10.1016/j.foodhyd.2017.04.033

    Article  CAS  Google Scholar 

  55. Debiagi F, Mali S, Grossmann MVE, Yamashita F (2011) Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Braz Arch Biol Technol 54:1043–1052. https://doi.org/10.1590/S1516-89132011000500023

    Article  CAS  Google Scholar 

  56. Arshanitsa A, Vevere L, Telysheva G et al (2015) Functionality and physico-chemical characteristics of wheat straw lignin, Biolignin™, derivatives formed in the oxypropylation process. Holzforschung 69:785–793. https://doi.org/10.1515/hf-2014-0274

    Article  CAS  Google Scholar 

  57. Travalini AP, Lamsal B, Magalhães WLE, Demiate IM (2019) Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. Int J Biol Macromol 139:1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115

    Article  CAS  PubMed  Google Scholar 

  58. Bergel BF, da Luz LM, Santana RMC (2018) Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Prog Org Coat 118:91–96. https://doi.org/10.1016/j.porgcoat.2018.01.029

    Article  CAS  Google Scholar 

  59. El Halal SLM, Bruni GP, do Evangelho JA et al (2018) The properties of potato and cassava starch films combined with cellulose fibers and/or nanoclay. Starch/Staerke 70:1–10. https://doi.org/10.1002/star.201700115

    Article  CAS  Google Scholar 

  60. Fitch-Vargas PR, Camacho-Hernández IL, Martínez-Bustos F et al (2019) Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydr Polym 219:378–386. https://doi.org/10.1016/j.carbpol.2019.05.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from CAPES (Coordenadoria de Aperfeiçoamento de Pessoal para o Ensino Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Leites Luchese.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, J.B., Ginity, M.M., Luchese, C.L. et al. Reuse of Different Agroindustrial Wastes: Pinhão and Pecan Nutshells Incorporated into Biocomposites Using Thermocompression. J Polym Environ 28, 1431–1440 (2020). https://doi.org/10.1007/s10924-020-01696-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01696-w

Keywords

Navigation