Skip to main content
Log in

Effective Adsorption of Cr(VI) by High Strength Chitosan/Montmorillonite Composite Hydrogels Involving Spirulina Biomass/Microalgae

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The “3-in-1 type” biopolymer composite (chitosan/montmorillonite clay/biosorbent) hydrogels were produced and used as adsorbents for Cr(VI) ion. Na-Montmorillonite (NaMMT) clay was modified with Spirulina (Sp) biosorbent by using lyophilization based “cryoscopic expansion” (C-XP) method. The Sp immobilized MMT (SpMMT) clay containing hydrogels were found to have an open/extended form of Sp structure on their pores’ walls, presenting all possible receptor groups for adsorption of Cr(VI) ions. SpMMT loaded hydrogels showed higher adsorption capacities than NaMMT loaded ones. The physically crosslinked hydrogel including only 1% SpMMT (1SpM-H) clay exhibited 150% higher adsorption capacity as compared to neat chitosan hydrogel even in 50 ppm Cr(VI) solution. The same composite hydrogel was found to adsorp about 780% Cr(VI) with respect to the clay’s weight while individual uses of Sp and MMT can remove only about 4.80 and 0.36% Cr(VI) with respect to their weights. The pseudo-first order model was found to be the most suitable for the kinetic data of NaMMT loaded hydrogels while that of SpMMT containing hydrogels followed the pseudo-second order kinetics. The isotherm data of all the hydrogels exhibited a better fit to the Freundlich and Sips model. The maximum adsorption capacity (3333 mg g−1) calculated by Sips model was achieved via the hydrogel having 1% SpMMT which is in good agreement with the experimental kinetic data. The highest adsorption with the lowest amount of SpMMT clay could be attributed to its looser Sp network structure whose functional groups are in long-distance, releasing more adsorption sites for the Cr(VI). The highest compression modulus and toughness were also obtained with the 1SpM-H hydrogel which is probably due to increased physical and reversible interactions between chitosan molecules and SpMMT clay layers at optimum clay loading (1%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yusof AM, Malek NANN (2009) J Hazard Mater 162:1019

    Article  CAS  PubMed  Google Scholar 

  2. Bai S, Abraham TE (2001) Bioresour Technol 79:73

    Article  Google Scholar 

  3. Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Bioresour Technol 100:2770

    Article  CAS  PubMed  Google Scholar 

  4. Gupta V, Rastogi A (2009) J Hazard Mater 163:396

    Article  CAS  PubMed  Google Scholar 

  5. Maryuk O, Pikus S, Majdan M, Skrzypek H, Zięba E (2005) Mater Lett 59:2015

    Article  CAS  Google Scholar 

  6. Aydınoğlu D, Akgül Ö, Bayram V, Şen S (2014) Polym Plast Technol Eng 53:1706

    Article  CAS  Google Scholar 

  7. Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Process Biochem 40:1319

    Article  CAS  Google Scholar 

  8. Tekay E, Şen S, Aydınoğlu D, Nugay N (2016) e-Polymers 16:15–24

    Article  CAS  Google Scholar 

  9. Arunakumara K, Zhang X, Song X (2008) JOUC 7:397

    CAS  Google Scholar 

  10. Chojnacka K, Chojnacki A, Gorecka H (2005) Chemosphere 59:75

    Article  CAS  PubMed  Google Scholar 

  11. Doshi H, Ray A, Kothari I (2007) Biotechnol Bioeng 96:1051

    Article  CAS  PubMed  Google Scholar 

  12. Wang W, Zhao Y, Yi H, Chen T, Kang S, Li H, Song S (2017) Nanotechnology 29:025605

    Article  CAS  Google Scholar 

  13. Kang S, Zhao Y, Wang W, Zhang T, Chen T, Yi H, Rao F, Song S (2018) Appl Surf Sci 448:203

    Article  CAS  Google Scholar 

  14. Wang W, Zhao Y, Bai H, Zhang T, Ibarra-Galvan V, Song S (2018) Carbohydr Polym 198:518

    Article  CAS  PubMed  Google Scholar 

  15. Hoffman AS (2012) Adv Drug Deliv Rev 64:18

    Article  Google Scholar 

  16. Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Carbohydr Polym 69:41

    Article  CAS  Google Scholar 

  17. Wang M (2003) Biomaterials 24:2133

    Article  CAS  PubMed  Google Scholar 

  18. Kithva P, Grøndahl L, Martin D, Trau M (2010) J Mater Chem 20:381

    Article  CAS  Google Scholar 

  19. Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Carbohydr Polym 82:291

    Article  CAS  Google Scholar 

  20. Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q (2008) J Phys Chem B 112:3876

    Article  CAS  PubMed  Google Scholar 

  21. Díaz-Visurraga J, Melendrez M, Garcia A, Paulraj M, Cardenas G (2010) J Appl Polym Sci 116:3503

    Google Scholar 

  22. Yang X, Tu Y, Li L, Shang S, Tao X (2010) ACS Appl Mater Interfaces 2:1707

    Article  CAS  PubMed  Google Scholar 

  23. Mert HH, Tekay E, Nugay N, Nugay T, Şen S (2018) Polym Eng Sci 58:1229

    Article  CAS  Google Scholar 

  24. Kummer G, Schonhart C, Fernandes M, Dotto G, Missio A, Bertuol D, Tanabe E (2018) J Polym Environ 26:4073

    Article  CAS  Google Scholar 

  25. Eaton ADCLS, Greenberg AE, Franson MAH (2005) In: Eaton AD (ed) Standard methods for the examination of water and wastewater. American public health association, Washington DC, p 49

    Google Scholar 

  26. Palantöken S, Tekay E, Şen S, Nugay T, Nugay N (2016) Polym Compos 37:2770

    Article  CAS  Google Scholar 

  27. Tu J, Cao Z, Jing Y, Fan C, Zhang C, Liao L, Liu L (2013) Compos Sci Technol 85:126

    Article  CAS  Google Scholar 

  28. Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) J Mater Chem B 1:2078

    Article  CAS  Google Scholar 

  29. Ansari R, Delavar AF (2010) J Polym Environ 18:202

    Article  CAS  Google Scholar 

  30. Vachoud L, Zydowicz N, Domard A (1997) Carbohydr Res 302:169

    Article  CAS  Google Scholar 

  31. Dotto G, Lima E, Pinto L (2012) Bioresour Technol 103:123

    Article  CAS  PubMed  Google Scholar 

  32. Mahl CR, Taketa TB, Bataglioli RA, de Arruda EJ, Beppu MM (2018) J Polym Environ 26:4338

    Article  CAS  Google Scholar 

  33. Theivarasu C, Mylsamy S (2010) Int J Eng Sci Technol 2:6284

    Google Scholar 

  34. Akar ST, Yetimoglu Y, Gedikbey T (2009) Desalination 244:97

    Article  CAS  Google Scholar 

  35. Hoffman AS (2002) Adv Drug Deliv Rev 54:3

    Article  CAS  PubMed  Google Scholar 

  36. Helvacıoğlu E, Aydın V, Nugay T, Nugay N, Uluocak BG, Şen S (2011) J Polym Res 18:2341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided by Yalova University Scientific Research Projects Coordination Department (project no. 2015/BAP/117) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Şen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekay, E., Aydınoğlu, D. & Şen, S. Effective Adsorption of Cr(VI) by High Strength Chitosan/Montmorillonite Composite Hydrogels Involving Spirulina Biomass/Microalgae. J Polym Environ 27, 1828–1842 (2019). https://doi.org/10.1007/s10924-019-01481-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01481-4

Keywords

Navigation