Skip to main content
Log in

Removal of Cr(VI) Ions from Aqueous Solutions Using Poly 3-Methyl Thiophene Conducting Electroactive Polymers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper deals with a new application of poly 3-methyl thiophene synthesized chemically onto sawdust (termed as P3MTh/SD) as an effective adsorbent for removal of Cr(VI) ions from aqueous solutions using column system. Chemical synthesis of poly 3-methyl thiophene was performed by addition of ferric chloride (in chloroform) as oxidant to sawdust which had previously been soaked in monomer solution. All the sorption experiments were conducted using dynamic or column system at room temperature. The effect of important parameters such as pH and initial concentration on uptake of Cr(VI) was investigated. In order to find out the possibility of the regeneration and reuse of the exhausted adsorbent, desorption studies were also performed. The currently introduced adsorbent was found to be an efficient adsorbent for removal of highly toxic and hazardous Cr(VI) ions from aqueous solutions. As our breakthrough analysis has indicated, each gram of P3MTh/SD is able to remove more than 95% of Cr(VI)ions from 300 mL of Cr(VI) polluted solution with the initial concentration of 25 mg L−1 in column system. Sorption/desorption of Cr(VI) ions was found to be a highly pH dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Katz F, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publisher, New York, p 51

    Google Scholar 

  2. Ajmal Alikhan M, Siddiqui BA (1996) Water Resour 30:1478

    Article  Google Scholar 

  3. Walter M (1993) Chromium in human nutrition: a review. J Nutr 123(4):626

    Google Scholar 

  4. Bobrowski A, Mocak J, Dominik J, Pereira H, Bas B, Knap W (2004) Acta Chim Slov 51:77

    CAS  Google Scholar 

  5. Donald B (1999) Chromium Clin Toxicol 37(2):173

    Article  Google Scholar 

  6. Metcalf and Eddy Inc (1991) In: Tchobanoglous G, Burton FL (ed) Wastewater engineering, treatment, disposal and reuse, 3rd edn. McGraw-Hill, New York

  7. Rengaraj S, Kyeong-Ho Y, Seung (2001) J Hazard Mater B87:273

    Article  Google Scholar 

  8. Sharma DC, Foster CF (1994) Bioresour Technol 47:257

    Article  CAS  Google Scholar 

  9. Dokken K, Gomez G (1999) In: Proceeding of the conference on hazardous waste research, pp 101–114

  10. Hassan S, Krishpajah A, Ghosh TK, VisNanath DS, Boddu VM, Smith ED (2003) Sep Sci Technol 38:3775

    Article  Google Scholar 

  11. Udaybhaskar P, Iyengar L, Prabhakara RA (1990) J Appl Polym Sci 39:739

    Article  CAS  Google Scholar 

  12. Ansari R (2006) E-J Chem 3:186

    CAS  Google Scholar 

  13. Singh R, Kaur A, Lal Yadav K, Bhattacharya D (2003) Curr Appl Phys 3:235

    Article  Google Scholar 

  14. Wallace GG, Spinks GM, Kane Maguire L, Teasdale PR (2009) Conducting Electroactive Polymers. CRC Press/Taylor and Francis, Boca Raton/London, p 197

    Google Scholar 

  15. Niemi VM, Knuuttila P, Österholm JE, Korvola J (1992) Polymer 33:1559

    Article  CAS  Google Scholar 

  16. McCullough RD, Tristramnagle S, Williams SP, Lowe RD, Jayaraman M (1993) J Am Chem Soc 115:4910

    Article  CAS  Google Scholar 

  17. Loponen MT, Taka T, Laakso J, Väkiparta K, Suuronen K, Valkeinen P, Österholm JE (1991) Synth Met 41:479

    Article  CAS  Google Scholar 

  18. Bartus JJ (1991) Macromol Sci Chem A28:917

    Article  CAS  Google Scholar 

  19. Ivaska A (1991) Electroanalysis 3:247

    Article  CAS  Google Scholar 

  20. Weidlich C, Mangold KM, Juttner K (2001) Electrochem Acta 47:741

    Article  CAS  Google Scholar 

  21. Rowley NM, Mortimer RJ (2002) Sci Prog 85:243

    Article  CAS  Google Scholar 

  22. Machida S, Miyata S (1989) Synth Met 31:311

    Article  CAS  Google Scholar 

  23. Ansari R, Khoshbakht FN (2007) React Funct Polym 67:367

    Article  CAS  Google Scholar 

  24. Ansari R, Aliakbar AR, Masoudi M (2005) J Polym Mater 21:75

    Google Scholar 

  25. Mastragostino M, Soddu L (1990) Electrochim Acta 35:463

    Article  CAS  Google Scholar 

  26. Ansari R, Fallah Delavar A (2009) J Appl Polym Sci 113:2293

    Article  CAS  Google Scholar 

  27. Kobya M (2004) Bioresour Technol 91:317

    Article  CAS  Google Scholar 

  28. Lebo SE, Gargulak J, Jerry D, McNally TJ (2001) “Lignin”. Kirk—Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  29. El Mansouri N, Salvado J (2007) Ind Crop Prod 26:116

    Article  CAS  Google Scholar 

  30. Pan BC, Meng FW, Chen XQ et al (2005) J Hazard Mater 124(1–3):74

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank and appreciate of postgraduate studies of Guilan University for its financial support for performing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, R., Fallah Delavar, A. Removal of Cr(VI) Ions from Aqueous Solutions Using Poly 3-Methyl Thiophene Conducting Electroactive Polymers. J Polym Environ 18, 202–207 (2010). https://doi.org/10.1007/s10924-010-0199-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0199-7

Keywords

Navigation