Skip to main content
Log in

High strength poly(acrylamide)-clay hydrogels

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of polyacrylamide nanocomposite hydrogels were synthesized by in situ free radical polymerization of acrylamide (AAm) with ethylene glycol dimethacrylate (EGDMA) as a crosslinker in the presence of sodium montmorillonite (NaMMT) and organically modified montmorillonite (OrgMMT) clays. Modification of MMT was carried out with a quaternary salt of coco amine as intercalant having a styryl group whose contribution to both polymerization and crosslinking reactions via its reactive double bond was confirmed by solid state NMR. Exfoliation success was checked with X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques whereas mechanical performance was followed with uniaxial compression experiment. It has been found that exfoliated PAAm nanocomposites having 0.5% OrgMMT had both the maximum equilibrium swelling in water and compression strength as well as improved thermal stability due to the special and beneficial morphology observed via scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Matsumoto A, Yoshida R, Kataoka K (2004) glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5:1038–1045

    Article  CAS  Google Scholar 

  2. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474

    Article  CAS  Google Scholar 

  3. Orakdogen N, Okay O (2006) Reentrant conformation transition in poly(N, N-dimethylacrylamide) hydrogels in water-organic solvent mixtures. Polymer 47:561–568

    Article  CAS  Google Scholar 

  4. Byrne ME, Park K, Pepas NA (2002) Molecular imprınting within hydrogels. Adv Drug Delivery Rev 54:149–161

    Article  CAS  Google Scholar 

  5. Wu YT, Zou Z, Fan QQ (2009) Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties. J Mater Chem 19:7340–7346

    Article  CAS  Google Scholar 

  6. Lin J, Tang Q, Hu D, Sun X, Li Q, Wu J (2009) Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure. Colloid Surface A 346:177–183

    Article  CAS  Google Scholar 

  7. Sun X, Li Q, Wu J, Lin J, Huang M, Tang Q (2009) A simple route to high-strength hydrogel with an interpenetrating polymer network. E-Polymers 90:1–6

    Google Scholar 

  8. Lin J, Xu S, Shi X, Feng S, Wang J (2009) Synthesis and properties of a novel double network nanocomposite hydrogel. Polym Adv Technol 20:645–649

    Article  CAS  Google Scholar 

  9. Li B, Jiang Y, Liu Y, Wu Y, Ren H, Zhu B, Zhu M (2009) Preparation and characterization of inorganic/organic crosslinking poly(n-isopropylacrylamide)/poly(acrylamide) interpenetrating network hydrogels. Acta Polym Sin 5:419–424

    Article  Google Scholar 

  10. Qin X, Zhao F, Liu Y, Wang H, Feng S (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625

    Article  CAS  Google Scholar 

  11. Abdurrahmanoglu S, Can V, Okay O (2008) Equilibrium swelling behavior and elastic properties of polymer–clay nanocomposite hydrogels. J Appl Polym Sci 109:3714–3724

    Article  CAS  Google Scholar 

  12. Li P, Siddaramaiah KNH, Yoo GH, Lee JH (2009) Poly(acrylamide/laponite) nanocomposite hydrogels: Swelling and cationic dye adsorption properties. J Appl Polym Sci 111:1786–1798

    Article  CAS  Google Scholar 

  13. Okay O, Oppermann W (2007) Polyacrylamide–clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40:3378–3387

    Article  CAS  Google Scholar 

  14. Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer 49:5064–5071

    Article  CAS  Google Scholar 

  15. Gao D, Heimann RB, Williams MC, Wardhaugh LT, Muhammad M (1999) Rheological properties of poly(acrylamide)-bentonite composite hydrogels. J Mater Sci 34:1543–1552

    Article  Google Scholar 

  16. Zolfaghari R, Katbab AA, Nabavizadeh J, Yousefzade R, Nejad M (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J Appl Polym Sci 100:2096–2103

    Article  CAS  Google Scholar 

  17. Memeşa M, Menceloğlu Y, Nugay T, Nugay N (2004) Layered silica modification with reactive groups for polystyrene nanocomposites. Polym Preprint Am Chem Soc Div Polym Chem 45:806–807

    Google Scholar 

  18. Alexandre M, Dubois P (2000) Polymer layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R: Reports 28:1–63

    Article  Google Scholar 

  19. Zilg C, Mülhaupt R, Finter J (1999) Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol Chem Phys 200:661–670

    Article  CAS  Google Scholar 

  20. Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Mülhaupt R (2000) Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromol Mater Eng 275:8–17

    Article  CAS  Google Scholar 

  21. Haraguchi K, Takehisa T, Fan S (2002) effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  22. Haraguchi K (2007) Nanocomposite Hydrogels. Curr Opin Solid State Mater Sci 11:47–54

    Article  CAS  Google Scholar 

  23. Messersmith PB, Znidarsich F (1997) Synthesis and LCST behavior of thermally responsive poly(N-isopropylacrylamide)/layered silicate nanocomposites. Mat Res Soc Symp 457:507–512

    Article  CAS  Google Scholar 

  24. Liang L, Liu J, Gong X (2000) Thermosensitive poly(N-isopropylacrylamide)-clay nanocomposites with enhanced temperature response. Langmuir 16:9895–9899

    Article  CAS  Google Scholar 

  25. Haraguchi K, Song L (2007) Microstructures formed in co-crosslinked networks and their relationships to the optical and mechanical properties of PINA/clay nanocomposite gels. Macromolecules 40:5526–5536

    Article  CAS  Google Scholar 

  26. Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content. Macromolecules 39:1898–1905

    Article  CAS  Google Scholar 

  27. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-Dimethylacrylamide) and Clay. Macromolecules 36:5732–5741

    Google Scholar 

  28. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim Acta 453:75–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supports given by Bogazici University Research Foundation (projects no. BAP5705), Yalova University Scientific Research Projects Coordination Department (Projects no. 2010–003) and Scientific and Technological Research Council of Turkey (TUBİTAK) (Project no. 110 M029) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Şen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helvacıoğlu, E., Aydın, V., Nugay, T. et al. High strength poly(acrylamide)-clay hydrogels. J Polym Res 18, 2341–2350 (2011). https://doi.org/10.1007/s10965-011-9647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9647-x

Keywords

Navigation