Skip to main content

Advertisement

Log in

Advances in Studies Using Vegetable Wastes to Obtain Pectic Substances: A Review

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Vegetable waste represents a serious environmental problem for industries; however, it is also a valuable source of pectic substances. This paper aims to highlight the advances that have been made through studies regarding pectic substances from vegetable wastes, as well as providing an overview of the chemical structure of pectin, extraction and characterisation techniques, and potential applications for pectin in relation to the areas of food and health. Pectin is mainly composed of galacturonic acid and it is one of the most complex polysaccharides in nature. A wide range of vegetable wastes contain a high pectin yield that can be industrially utilised. However, factors such as the type of raw material, the maturation stage of that raw material, and the extraction techniques that are used, affect the structural and functional properties of the pectin, as well as influencing its potential application. This study outlines the different environmentally-friendly techniques that are used to extract pectin, such as microwave, ultrasound, enzymatic and other methods, highlighting their advantages and disadvantages compared with the conventional extraction method. Some techniques are advantageous for industrial use; however, it is necessary to optimise the extraction conditions and to make a financial investment in order to obtain a high yield of pectin in a short amount of time. Characteristics such as galacturonic acid content, the degree of methyl esterification, the degree of acetylation, molar mass and the chemical structure are essential parameters required to define possible applications of pectic substances. In vitro and in vivo studies regarding the properties of pectic substances have shown that these substances can be beneficial to health, with antimicrobial, antitumoral, anti-inflammatory and analgesic effects. Nevertheless, further studies are required to examine the mechanisms of action for these effects to be applied in humans. Consequently, greater understanding about the chemical structure of pectin and its extraction techniques are crucial for the development of new foods and drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure was reproduced with permission from [4, 95,96,97,98,99]

Fig. 2

Similar content being viewed by others

References

  1. Gharib-Bibalan S (2018) Food Eng Rev 10:95–111

    Article  CAS  Google Scholar 

  2. Gerschenson LN (2017) Food Hydrocoll 68:23–30

    Article  CAS  Google Scholar 

  3. Petkowicz CLO, Vriesmann LC, Williams PA (2017) Food Hydrocoll 65:57–67

    Article  CAS  Google Scholar 

  4. Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  5. Majdoub H, Roudesli S, Deratani A (2001) Polym Int 50:552–560

    Article  CAS  Google Scholar 

  6. May CD (1990) Carbohydr Polym 12:79–99

    Article  CAS  Google Scholar 

  7. Noreen A, Nazli Z, Akram J, Rasul I, Mansha A (2017) Int J Biol Macromol 101:254–272

    Article  CAS  PubMed  Google Scholar 

  8. Sila DN, Van Buggenhout S, Duvetter T, Van Loey A, Hendrickx M (2009) Compr Rev Food Sci Food Saf 8:105–117

    Article  CAS  Google Scholar 

  9. Adetunji LR, Adekunle A, Orsat V, Raghavan V (2017) Food Hydrocoll 62:239–250

    Article  CAS  Google Scholar 

  10. Perussello CA, Zhang Z, Marzocchella A, Tiwari BK (2017) Compr Rev Food Sci Food Saf 16:776–796

    Article  CAS  PubMed  Google Scholar 

  11. Muzzarelli RAA, Boudrant J, Meyer D, Manno N, Demarchis M, Paoletti MG (2012) Carbohydr Polym 87:995–1012

    Article  CAS  Google Scholar 

  12. Lv C, Wang Y, Wang L, Li D, Adhikari B (2013) Carbohydr Polym 95:233–240

    Article  CAS  PubMed  Google Scholar 

  13. Fertonani HCR, Scabio A, Carneiro EBB, Canteri-Schemim MHG, Nogueira A, Wosiacki G (2009) Braz Arch Biol Technol 52:177–185. https://doi.org/10.1590/S1516-89132009000100023

    Article  CAS  Google Scholar 

  14. Kanmani P, Dhivya E, Aravind J, Kumaresan K (2014) IJEE 5:303–312. https://doi.org/10.5829/idosi.ijee.2014.05.03.10

    Article  CAS  Google Scholar 

  15. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Compr Rev Food Sci Food Saf 17:512–531

    Article  CAS  PubMed  Google Scholar 

  16. Muñoz-Labrador A, Moreno R, Villamiel M, Montilla A (2018) J Sci Food Agric https://doi.org/10.1002/jsfa.9018

    Article  PubMed  Google Scholar 

  17. Banerjee J, Singh R, Vijayaraghavan R, Macfarlane D, Patti AF, Arora A (2017) Food Chem 225:10–22

    Article  CAS  PubMed  Google Scholar 

  18. Koubala BB, Mbome LI, Kansci G, Mbiapo FT, Crepeau MJ, Thibault JF, Ralet MC (2008) Food Chem 106:1202–1207

    Article  CAS  Google Scholar 

  19. Emaga TH, Ronkart SN, Robert C, Wathelet B, Paquot M (2008) Food Chem 108:463–471

    Article  CAS  Google Scholar 

  20. Emaga TH, Robert C, Ronkart SN, Wathelet B, Paquot M (2008) Bioresour Technol 99:4346–4354

    Article  CAS  Google Scholar 

  21. Yapo BM (2009) Biomacromolecules 10:717–721

    Article  CAS  PubMed  Google Scholar 

  22. Qiu LP, Zhao GL, Wu H, Jiang L, Li XF, Liu JJ (2010) Carbohydr Polym 80:326–331

    Article  CAS  Google Scholar 

  23. Castillo-Israel KAT, Baguio SF, Diasanta MDB, Lizardo RCM, Dizon EI, Mejico MIF (2015) Int Food Res J 22:202–207

    CAS  Google Scholar 

  24. Oliveira TÍS, Rosa MF, Cavalcante FL, Pereira PHF, Moates GK, Wellner N, Mazzetto SE, Waldron KW, Azeredo HMC (2016) Food Chem 198:113–118

    Article  CAS  PubMed  Google Scholar 

  25. Swamy GJ, Muthukumarappan K (2017) Food Chem 220:108–114

    Article  CAS  PubMed  Google Scholar 

  26. Maran JP, Priya B, Al-Dhabi NA, Ponmurugan K, Moorthy IG, Sivarajasekar N (2017) Ultrason Sonochem 35:204–209

    Article  CAS  PubMed  Google Scholar 

  27. Lin BC, Cze CY (2018) MATEC Web Conf. 1002:15–28. https://doi.org/10.1051/matecconf/201815201002

    Article  CAS  Google Scholar 

  28. Mollea C, Chiampo F, Conti R (2008) Food Chem 107:1353–1356

    CAS  Google Scholar 

  29. Vriesmann LC, Amboni RDMC, Petkowicz CLO (2011) Ind Crop Prod 34:1173–1181

    Article  CAS  Google Scholar 

  30. Vriesmann LC, Teófilo RF, Petkowicz CLO (2011) Carbohydr Polym 84:1230–1236

    Article  CAS  Google Scholar 

  31. Vriesmann LC, Teófilo RF, Petkowicz CLO (2012) LWT - Food Sci Technol 49:108–116

    Article  CAS  Google Scholar 

  32. Chan SY, Choo WS (2013) Food Chem 141:3752–3758

    Article  CAS  PubMed  Google Scholar 

  33. Jafari F, Khodaiyan F, Kiani H, Saeid S (2017) Carbohydr Polym 157:1315–1322

    Article  CAS  PubMed  Google Scholar 

  34. Broxterman SE, Picouet P, Schols HA (2017) Carbohydr Polym 177:58–66

    Article  CAS  PubMed  Google Scholar 

  35. Colodel C, Bagatin RMG, Tavares TM, Petkowicz CLO (2017) Carbohydr Polym 174:226–234

    Article  CAS  PubMed  Google Scholar 

  36. Colodel C, Petkowicz CLO (2019) Food Hydrocoll 86:193–200

    Article  CAS  Google Scholar 

  37. Thirugnanasambandham K, Sivakumar V, Maran JP (2014) Carbohydr Polym 112:622–626

    Article  CAS  PubMed  Google Scholar 

  38. Muhammad K, Izalin N, Zahari M, Gannasin SP, Adzahan NM, Bakar J (2014) Food Hydrocoll 42:289–297

    Article  CAS  Google Scholar 

  39. Tongkham N, Juntasalay B, Lasunon P, Sengkhamparn N (2017) Agric Nat Resour 51:262–267

    Google Scholar 

  40. Liang R-H, Chen J, Liu W, Liu C-M, Yu W, Yuan M, Zhou X-Q (2012) Carbohydr Polym 87:76–83

    Article  CAS  PubMed  Google Scholar 

  41. Minjares-Fuentes R, Femenia A, Garau MC, Meza-Velázquez JA, Simal S, Rosselló C (2014) Carbohydr Polym 106:179–189

    Article  CAS  PubMed  Google Scholar 

  42. Methacanon P, Krongsin J, Gamonpilas C (2014) Food Hydrocoll 35:383–391

    Article  CAS  Google Scholar 

  43. Bagherian H, Zokaee AF, Fouladitajar A, Mohtashamy M (2011) Chem Eng Process Process Intensif 50:1237–1243

    Article  CAS  Google Scholar 

  44. Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) J Food Eng 126:72–81

    Article  CAS  Google Scholar 

  45. Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T (2015) Food Chem 178:106–114

    Article  CAS  PubMed  Google Scholar 

  46. Chen R, Jin C, Tong Z, Lu J, Tan L, Tian L, Chang Q (2016) Carbohydr Polym 136:187–197

    Article  CAS  PubMed  Google Scholar 

  47. Liew SQ, Teoh WH, Tan CK, Yusoff R, Ngoh GC (2018) Int J Biol Macromol 116:128–135

    Article  CAS  PubMed  Google Scholar 

  48. Wang W, Ma X, Jiang P, Hu L, Zhi Z, Chen J, Ding T, Ye X, Liu D (2016) Food Hydrocoll 61:730–739

    Article  CAS  Google Scholar 

  49. Wang W, Wu X, Chantapakul T, Wang D, Zhang S, Ma X, Ding T, Ye X, Liu D (2017) Food Res Int 102:101–110

    Article  CAS  PubMed  Google Scholar 

  50. Guo X, Zhao W, Liao X, Hu X (2017) LWT - Food Sci Technol 79:640–646

    Article  CAS  Google Scholar 

  51. Begum R, Aziz MG, Uddin MB, Yusof YA (2014) Agric Sci Procedia 2:244–251

    Google Scholar 

  52. Sundarraj AA, Thottiam VR, Sriramulu G (2018) Int J Biol Macromol 106:698–703

    Article  CAS  PubMed  Google Scholar 

  53. Xu SY, Liu JP, Huang X, Du LP, Shi FL, Dong R, Huang XT, Zheng K, Liu Y, Cheong KL (2018) LWT—Food Sci Technol 90:577–582

    Article  CAS  Google Scholar 

  54. Yuliarti O, Goh KKT, Matia-Merino L, Mawson J, Brennan C (2015) Food Chem 187:290–296

    Article  CAS  PubMed  Google Scholar 

  55. Koubala BB, Kansci G, Mbome LI, Crépeau MJ, Thibault JF, Ralet MC (2008) Food Hydrocoll 22:1345–1351

    Article  CAS  Google Scholar 

  56. Maran JP, Swathi K, Jeevitha P, Jayalakshmi J, Ashvini G (2015) Carbohydr Polym 123:67–71

    Article  CAS  PubMed  Google Scholar 

  57. Wang M, Huang B, Fan C, Zhao K, Hu H, Xu X, Pan S, Liu F (2016) Int J Biol Macromol 91:794–803

    Article  CAS  PubMed  Google Scholar 

  58. Oliveira AN, Paula DA, Oliveira EB, Saraiva SH, Stringheta PC, Ramos AM (2018) Int J Biol Macromol 113:395–402

    Article  CAS  Google Scholar 

  59. Raji Z, Khodaiyan F, Rezaei K, Kiani H (2017) Int J Biol Macromol 98:709–716

    Article  CAS  PubMed  Google Scholar 

  60. Koubala BB, Christiaens S, Kansci G, Van Loey AM, Hendrickx ME (2014) Food Res Int 55:215–221

    Article  CAS  Google Scholar 

  61. Maran JP, Prakash KA (2015) Int J Biol Macromol 73:202–206

    Article  CAS  PubMed  Google Scholar 

  62. Kliemann E, Simas KN, Amante ER, Prudêncio ES, Teófilo RF, Ferreira MMC, Amboni RDMC (2009) Int J Food Sci Technol 44:476–483

    Article  CAS  Google Scholar 

  63. Yapo BM (2009) J Agric Food Chem 57:1572–1578

    Article  CAS  PubMed  Google Scholar 

  64. Lima MS, Paiva EP, Andrade SAC, Paixão JA (2010) Food Hydrocoll 24:1–7

    Article  CAS  Google Scholar 

  65. Kulkarni SG, Vijayanand P (2010) LWT—Food Sci Technol 43:1026–1031

    Article  CAS  Google Scholar 

  66. Canteri MHG, Scheer AP, Ginies C, Reich M, Renard CMCG, Wosiacki G (2012) J Food Process Eng 35:800–809

    Article  CAS  Google Scholar 

  67. Seixas FL, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLO (2014) Food Hydrocoll 38:186–192

    Article  CAS  Google Scholar 

  68. Liew SQ, Chin NL, Yusof YA (2014) Agric Agric Sci Procedia 2:231–236

    Google Scholar 

  69. Oliveira CF, Giordani D, Gurak PD, Cladera-Olivera F, Marczak LDF (2015) Innov Food Sci Emerg Technol 29:201–208

    Article  CAS  Google Scholar 

  70. Liew SQ, Chin NL, Yusof YA, Sowndhararajan K (2015) J Food Process Eng 39:501–511

    Article  CAS  Google Scholar 

  71. Oliveira CF, Giordani D, Lutckemier R, Deyse P, Cladera-Olivera F, Damasceno L, Marczak F (2016) LWT—Food Sci Technol 71:110–115

    Article  CAS  Google Scholar 

  72. Vasco-Correa J, Zapata AD (2017) LWT—Food Sci Technol 80:280–285

    Article  CAS  Google Scholar 

  73. Souza CG, Rodrigues THS, Silva LMA, Ribeiro PRV, Brito ES (2018) J Sci Food Agric 98:1362–1368

    Article  CAS  PubMed  Google Scholar 

  74. Moura FA, Macagnan FT, Santos LR, Bizzani M, Petkowicz CLO, Silva LP (2017) J Food Sci Technol 54:3111–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pagan J, Ilbarz A, Llorca M, Pagan A, Barbosa-Cánovas GV (2001) Food Res Int 34:605–612

    Article  CAS  Google Scholar 

  76. Chaharbaghi E, Khodaiyan F, Saeid S (2017) Carbohydr Polym 173:107–113

    Article  CAS  PubMed  Google Scholar 

  77. Basanta MF, Ponce NMA, Rojas AM, Stortz CA (2012) Carbohydr Polym 89:230–235

    Article  CAS  PubMed  Google Scholar 

  78. Lira-Ortiz AL, Reséndiz-Vega F, Ríos-Leal E, Contreras-Esquivel JC, Chavarría-Hernández N, Vargas-Torres A, Rodríguez-Hernández AI (2014) Food Hydrocoll 37:93–99

    Article  CAS  Google Scholar 

  79. Moorthy IG, Maran JP, Surya SM, Naganyashree S, Shivamathi CS (2015) Int J Biol Macromol 72:1323–1328

    Article  CAS  PubMed  Google Scholar 

  80. Abid M, Renard CMGC, Watrelot AA, Fendri I, Attia H, Ayadi MA (2016) Int J Biol Macromol 93:186–194

    Article  CAS  PubMed  Google Scholar 

  81. Abid M, Cheikhrouhou S, Renard CMGC, Bureau S, Cuvelier G, Attia H, Ayadi MA (2017) Food Chem 215:318–325

    Article  CAS  PubMed  Google Scholar 

  82. Yang X, Nisar T, Hou Y, Gou X, Sun L, Guo Y (2018) Food Hydrocoll 85:30–38

    Article  CAS  Google Scholar 

  83. Colodel C, Vriesmann LC, Petkowicz CLO (2018) Carbohydr Polym 195:120–127

    Article  CAS  PubMed  Google Scholar 

  84. Ptichkina NM, Markina OA, Rumyantseva GN (2008) Food Hydrocoll 22:192–195

    Article  CAS  Google Scholar 

  85. Košťálová Z, Aguedo M, Hromádková Z (2016) Chem Eng Process Process Intensif 102:9–15

    Article  CAS  Google Scholar 

  86. Maran JP, Priya B (2015) Carbohydr Polym 115:732–738

    Article  CAS  PubMed  Google Scholar 

  87. Yang Y, Wang Z, Hu D, Xiao K, Wu J (2018) Food Hydrocoll 79:189–196

    Article  CAS  Google Scholar 

  88. Li D, Jia X, Wei Z, Liu Z (2012) Carbohydr Polym 88:342–346

    Article  CAS  Google Scholar 

  89. Guo X, Meng H, Zhu S, Tang Q, Pan R, Yu S (2016) Carbohydr Polym 136:316–321

    Article  CAS  PubMed  Google Scholar 

  90. Huang X, Li D, Wang L (2018) J Food Eng 218:44–49

    Article  CAS  Google Scholar 

  91. Grassino AN, Brncic M, Vikic-Topicc D, Rosa S, Dent M, Brncic SR (2016) Food Chem 198:93–100

    Article  CAS  PubMed  Google Scholar 

  92. Morales-Contreras BE, Contreras-Esquivel JC, Wicker L, Ochoa-Mart LA (2017) J Food Sci 82:1594–1601

    Article  CAS  PubMed  Google Scholar 

  93. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Carbohydr Polym 101:786–791

    Article  CAS  Google Scholar 

  94. Voragen AGJ, Pilnik W, Thibault JF, Axelos MAV, Renard CMGC (1995) In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 287–339

    Google Scholar 

  95. Ridley BL, O’Neill MA, Mohnen D (2001) Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  96. Leclere L, Van Cutsem P, Michiels C (2013) Front Pharmacol 4:1–8

    Article  CAS  Google Scholar 

  97. Neill MAO, Ishii T, Albersheim P, Darvill AG (2004) Annu Rev Plant Biol 55:109–139

    Article  CAS  Google Scholar 

  98. Willats WGT, Knox JP, Mikkelsen JD (2006) Trends Food Sci Technol 17:97–104

    Article  CAS  Google Scholar 

  99. Ngouémazong ED, Christiaens S, Shpigelman A, Van Loey A, Hendrickx M (2015) Compr Rev Food Sci Food Saf 14:705–718

    Article  CAS  Google Scholar 

  100. Mohnen D (2008) Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  101. Gullon B, Gómez B, Martinéz-Sabajanes M, Yáñez R, Parajo JC, Alonso JL (2013) Food Sci Technol 30:153–161

    Article  CAS  Google Scholar 

  102. Canteri MHG, Fertonani HCR, Wasczynskj N, Wosiacki G (2005) Braz Arch Biol Technol 48:259–266

    Article  Google Scholar 

  103. Alba K, Laws AP, Kontogiorgos V (2015) Food Hydrocoll 43:726–735

    Article  CAS  Google Scholar 

  104. Peng X-Y, Mu T, Zhang M, Sun H, Chen J, Yu M (2016) Food Hydrocoll 60:161–169

    Article  CAS  Google Scholar 

  105. Wikiera A, Mika M, Starzy A (2015) Carbohydr Polym 134:251–257

    Article  CAS  PubMed  Google Scholar 

  106. Roselló-Soto E, Parniakov O, Deng Q, Patras A, Koubaa M, Grimi N, Bousseta N, Tiwari BK, Vorobiev E, Lebovka N, Barba FJ (2015) Food Eng Rev 8:214–234

    Article  CAS  Google Scholar 

  107. Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V (2016) Trends Food Sci Technol 49:96–109

    Article  CAS  Google Scholar 

  108. Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Brnčić SR (2018) Trends Food Sci Technol 76:28–37

    Article  CAS  Google Scholar 

  109. Parniakov O, Barba FJ, Grimi N, Lebovka N, Vorobiev E (2016) Food Chem 192:842–848

    Article  CAS  PubMed  Google Scholar 

  110. Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier A-S, Abert-Vian M (2017) Innov Food Sci Emerg Technol 41:357–377

    Article  CAS  Google Scholar 

  111. Guo X, Han D, Xi H, Rao L, Liao X, Hu X, Wu J (2012) Carbohydr Polym 88:441–448

    Article  CAS  Google Scholar 

  112. Guo X, Zhao W, Pang X, Liao X, Hu X, Wu J (2014) Food Hydrocoll 35:217–225

    Article  CAS  Google Scholar 

  113. Wang X, Chen Q, Lü X (2014) Food Hydrocoll 38:129–137

    Article  CAS  Google Scholar 

  114. Thirugnanasambandham K, Sivakumar V (2015) Int J Biol Macromol 72:1351–1357

    Article  CAS  PubMed  Google Scholar 

  115. Pandit SG, Vijayanand P, Kulkarni SG (2015) LWT—Food Sci Technol 64:1010–1014

    Article  CAS  Google Scholar 

  116. Roselló-Soto E, Galanakis CM, Brnčić M, Orlien V, Francisco J, Mawson R, Knoerzer B, Tiwari BJ, Barba FJ (2015) Trends Food Sci Technol 42:134–149

    Article  CAS  Google Scholar 

  117. Barba FJ, Brianceau S, Turk M, Boussetta N, Vorobiev E (2015) Food Bioprocess Technol 8:1139–1148

    Article  CAS  Google Scholar 

  118. Misra NN, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inácio RS, Saraiva JA, Barba FJ (2017) Food Res Int 97:318–339

    Article  CAS  PubMed  Google Scholar 

  119. Poojary MM, Orlien V, Passamonti P, Olsen K (2017) Food Chem 234:236–244

    Article  CAS  PubMed  Google Scholar 

  120. Zhang T, Lan Y, Zheng Y, Liu F, Zhao D, Mayo KH, Zhou Y, Tai G (2016) Food Hydrocoll 58:113–119

    Article  CAS  Google Scholar 

  121. Morris VJ, Belshaw NJ, Waldron KW, Maxwell EG (2013) Bioact Carbohydr Diet Fibre 1:21–37

    Article  CAS  Google Scholar 

  122. Venzon SS, Canteri MHG, Granato D, Demczuk B, Maciel GM, Stafussa AP, Haminiuk CWI (2015) J Food Sci Technol 52:4102–4112

    Article  CAS  PubMed  Google Scholar 

  123. Ma S, Wang Z (2013) Carbohydr Polym 92:1700–1704

    Article  CAS  PubMed  Google Scholar 

  124. Staples M, Rolke J (2013) Modified pectins, composition and methods related thereto. US008420133B2

  125. Grassino AN, Barba FJ, Brnčić M, Jose M, Lucini L, Brnčić SR (2018) Food Chem 266:47–55

    Article  CAS  PubMed  Google Scholar 

  126. Ralet M, Crépeau M, Buchholt H (2003) Biochem Eng J 16:191–201

    Article  CAS  Google Scholar 

  127. Ranganna S (1995) In: Rangann S (ed) Handbook of analysis and quality control for fruits and vegetable, 2nd edn. Mc Graw Hill Publishers, New Delhi

    Google Scholar 

  128. McComb EA, McCready RM (1952) Anal Chem 24:1630–1632

    Article  CAS  Google Scholar 

  129. Scott RW (1979) Anal Chem 51:936–941

    Article  CAS  Google Scholar 

  130. Filisetti-Cozzi TMCC, Carpita NC (1991) Anal Biochem 197:157–162

    Article  CAS  PubMed  Google Scholar 

  131. Anthon GE, Barrett DM (2008) Food Chem 110:239–247

    Article  CAS  PubMed  Google Scholar 

  132. Yapo BM (2011) Carbohydr Polym 86:373–385

    Article  CAS  Google Scholar 

  133. Blumenkrantz N, Asboe-Hansen G (1973) Anal Biochem 54:484–489

    Article  CAS  PubMed  Google Scholar 

  134. Garna H, Mabon N, Nott K, Wathelet B, Paquot M (2006) Food Chem 96:477–484

    Article  CAS  Google Scholar 

  135. Nagel A, Sirisakulwat S, Carle R, Neidhart S (2014) J Agric Food Chem 62:2037–2048

    Article  CAS  PubMed  Google Scholar 

  136. Christiaens S, Uwibambe D, Uyttebroek M, Van Droogenbroeck B, Van Loey AM, Hendrickx ME (2015) LWT—Food Sci Technol 61:275–282

    Article  CAS  Google Scholar 

  137. Yapo BM (2010) Food Bioprod Process 88:283–290

    Article  CAS  Google Scholar 

  138. Garna H, Mabon N, Robert C, Cornet C, Nott K, Legros H, Wathelet B, Paquot M (2007) J Food Sci 72:1–9

    Article  CAS  Google Scholar 

  139. Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, Droogenbroeck BV, Elst K, Sforza S (2016) Food Chem 201:37–45

    Article  CAS  PubMed  Google Scholar 

  140. Georgiev Y, Ognyanov M, Yanakieva I, Kussovski V, Kratchanova M (2012) J Biosci Biotechnol 1:223–233

    Google Scholar 

  141. Kurita O, Fujiwara T, Yamazaki E (2008) Carbohydr Polym 74:725–730

    Article  CAS  Google Scholar 

  142. Gnanasambandam R, Proctor A (2000) Food Chem 68:327–332

    Article  CAS  Google Scholar 

  143. Singthong J, Cui SW, Ningsanond S, Goff HD (2004) Carbohydr Polym 58:391–400

    Article  CAS  Google Scholar 

  144. Grasdalen H, Bakdy OE, Larsen BO (1988) Carbohydr Res 184:183–191

    Article  CAS  Google Scholar 

  145. Hestrin S (1949) J Biol Chem 180:249–261

    CAS  PubMed  Google Scholar 

  146. Yapo BM, Lerouge P, Thibault JF, Ralet MC (2007) Carbohydr Polym 69:426–435

    Article  CAS  Google Scholar 

  147. Gopi D, Kanimozhi K, Bhuvaneshwari N, Indira J, Kavitha L (2014) Spectrochim Acta A 118:589–597

    Article  CAS  Google Scholar 

  148. Kpodo FM, Agbenorhevi JK, Alba K, Bingham RJ, Oduro IN, Morris GA, Kontogiorgos V (2017) Food Hydrocoll 72:323–330

    Article  CAS  Google Scholar 

  149. Min B, Lim J, Ko S, Lee K-G, Lee SH, Lee S (2011) Bioresour Technol 102:3855–3860

    Article  CAS  PubMed  Google Scholar 

  150. Hosseini SS, Khodaiyan F, Yarmand MS (2016) Carbohydr Polym 140:59–65

    Article  CAS  PubMed  Google Scholar 

  151. Alba K, Kontogiorgos V (2017) Food Hydrocoll 68:211–218

    Article  CAS  Google Scholar 

  152. Leclere L, Fransolet M, Cambier P, El Bkassiny S, Tikad A, Dieu M, Vincent SP, Van Cutsem P, Michiels C (2016) Carbohydr Polym 137:39–51

    Article  CAS  PubMed  Google Scholar 

  153. Platt D, Raz A (1992) J Natl Cancer Inst 84:438–442

    Article  CAS  PubMed  Google Scholar 

  154. Yamada H (1996) Pectins Pectinase 14:173–190

    Article  CAS  Google Scholar 

  155. Miyazaki S, Kawasaki N, Nakamura T, Iwatsu M, Hayashi T, Hou WM, Attwood D (2000) Int J Pharm 204:127–132

    Article  CAS  PubMed  Google Scholar 

  156. Liu L, Won YJ, Cooke PH, Coffin DR, Fishman ML, Hicks KB, Ma PX (2004) Biomaterials 25:3201–3210

    Article  CAS  PubMed  Google Scholar 

  157. Fukumori T, Kanayama HO, Raz A (2007) Drug Resistance Updates 10:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ovodova RG, Golovchenko VV, Popov SV, Popova GY, Paderin NM, Shashkov AS, Ovodov YS (2009) Food Chem 114:610–615

    Article  CAS  Google Scholar 

  159. Cipriani TR, Gracher AHP, Souza LM, Fonseca RJC, Belmiro CLR, Gorin PAJ, Sassaki GL, Iacomini M (2009) Thromb Haemost 101:860–866

    Article  CAS  PubMed  Google Scholar 

  160. Wattanakorn N, Asavapichayont P, Nunthanid J, Limmatvapirat S, Sungthongjeen S, Chantasart D, Sriamornsak P (2010) AAPS 11:743–751

    CAS  Google Scholar 

  161. Fan L, Cao M, Gao S, Wang W, Peng K, Tan C, Wen F, Tao S, Xie W (2012) Carbohydr Polym 88:707–712

    Article  CAS  Google Scholar 

  162. Silva DC, Freitas ALP, Barros FCN, Lins KOAL, Alves APNN, Alencar NMN, Figueiredo IST, Pessoa C, Moraes MO, Costa-Lotufo LV, Feitosa JPA, MacIel JS, Paula RCM (2012) Carbohydr Polym 87:139–145

    Article  CAS  PubMed  Google Scholar 

  163. Bayarri M, Oulahal N, Degraeve P, Gharsallaoui A (2014) J Food Eng 131:18–25

    Article  CAS  Google Scholar 

  164. Espinal-Ruiz M, Restrepo-Sánchez LP, Narváez-Cuenca CE (2016) Food Chem 209:144–153

    Article  CAS  PubMed  Google Scholar 

  165. Gómez B, Gullón B, Yáñez R, Schols H, Alonso JL (2016) J Funct Foods 20:108–121

    Article  CAS  Google Scholar 

  166. Samout N, Bouzenna H, Dhibi S, Ncib S, Elfeki A (2016) Biomed Pharmacother 83:1233–1238

    Article  CAS  PubMed  Google Scholar 

  167. Liu Y, Dong M, Yang Z, Pan S (2016) Int J Biol Macromol 89:484–488

    Article  CAS  PubMed  Google Scholar 

  168. Kawarai T, Narisawa N, Yoneda S, Tsutsumi Y, Ishikawa J (2016) Arch Oral Biol 68:73–82

    Article  CAS  PubMed  Google Scholar 

  169. Abu-Elsaad NM, Elkashef WF (2016) Cancer J Physiol Parmacol 94:554–562

    Article  CAS  Google Scholar 

  170. Harsha MR, Prakash CSV, Dharmesh SM (2016) Carbohydr Polym 138:143–155

    Article  CAS  PubMed  Google Scholar 

  171. Zeeb B, Schöck V, Schmid N, Majer L, Herrmann K, Hinrichs J, Weiss J (2018) Food Funct 9:1647–1656

    Article  CAS  PubMed  Google Scholar 

  172. Corrêa-Ferreira ML, Ferreira DM, Dallazen JL, Silva AMS, Werner MFP, Petkowicz CLO (2018) Int J Biol Macromol 107:2395–2403

    Article  CAS  PubMed  Google Scholar 

  173. Lu Y, Zhang M, Zhao PEI, Jia MIN, Liu B, Jia Q, Guo JUN, Dou LIN, Li J (2017) Mol Med Rep 26:647–653

    Article  CAS  Google Scholar 

  174. Paderin NM, Polugrudov AS, Khramova DS, Popov SV (2017) Bull Exp Biol Med 163:419–421

    Article  CAS  PubMed  Google Scholar 

  175. Mzoughi Z, Abdelhamid A, Rihouey C, Cerf D, Bouraoui A, Majdoub H (2018) Carbohydr Polym 185:127–137

    Article  CAS  PubMed  Google Scholar 

  176. Zeng X, Wang X, Zhao H, Xi Y, Cao J, Jiang W (2018) Drug Chem Toxicol 545:1–8

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. Renata D.M.C. Amboni is a recipient of a researcher fellowship (PQ2) from CNPq. We would like to pay a posthumous homage to Professor Gilvan Wosiacki, who devoted his life to studying and motivating his students, apple processing being his main field of study. To this great researcher on pectin, the authors thank for his contributions in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Dias de Mello Castanho Amboni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenda, F.R.B., Mattioda, F., Demiate, I.M. et al. Advances in Studies Using Vegetable Wastes to Obtain Pectic Substances: A Review. J Polym Environ 27, 549–560 (2019). https://doi.org/10.1007/s10924-018-1355-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1355-8

Keywords

Navigation