Skip to main content
Log in

Producing Conductive Graphene–Nanocellulose Paper in One-pot

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper reports a facile one-pot method to produce graphene oxide nanocellulose composite (GNCC) that was subsequently reduced using l-ascorbic acid to form a conductive paper (CP). Cellulose fibers were directly added into the reaction system during graphite exfoliation using sulfuric acid to produce cellulose nano- or microfibrils through acid hydrolysis along with mechancial mixing. FTIR and Raman analyses indicated that reduction using l-ascorbic acid efficiently produced a well-deoxygenated CP with high conductivity of 116.3 ± 1.5 S m−1 at 20% graphene oxide loading. Furthermore, the presence of cellulose nano- or microfibrils improved CP thermal stability with onset degradation Tonset of 319 °C as well as mechanical properties with a specific tensile of 19 N mg−1. This one-pot method substantially simplified the GNCC production process and has practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jung YH, Lee J, Qiu Y, Cho N, Cho SJ, Zhang H, Lee S, Kim TJ, Gong S, Ma Z (2016) Stretchable twisted-pair transmission lines for microwave frequency wearable electronics. Adv Funct Mater 26(26):4635–4642

    Article  CAS  Google Scholar 

  2. Li L, Wu Z, Yuan S, Zhang X-B (2014) Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ Sci 7(7):2101–2122

    Article  CAS  Google Scholar 

  3. Wang R, Chen L, Zhu J, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3(5):328–335

    Article  CAS  Google Scholar 

  4. Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922

    Article  CAS  Google Scholar 

  5. Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67

    Article  CAS  Google Scholar 

  6. Ye Y-S, Zeng H-X, Wu J, Dong L-Y, Zhu J-T, Xue Z-G, Zhou X-P, Xie X-L, Mai Y-W (2016) Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chem 18(6):1674–1683

    Article  CAS  Google Scholar 

  7. Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—review. Nano Energy 35:299–320

    Article  CAS  Google Scholar 

  8. Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–509

    Article  CAS  Google Scholar 

  9. Li Y, Zhu H, Shen F, Wan J, Han X, Dai J, Dai H, Hu L (2014) Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv Funct Mater 24(46):7366–7372

    Article  CAS  Google Scholar 

  10. Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal–graphene membranes with high electrical conductivity. Adv Mater 28(7):1501–1509

    Article  CAS  PubMed  Google Scholar 

  11. Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643

    Article  CAS  Google Scholar 

  12. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  PubMed  Google Scholar 

  13. Chen L, Zhu J, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843

    Article  CAS  Google Scholar 

  14. Qin Y, Qiu X, Zhu JY (2016) Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with dilute acid prehydrolysis. Sci Rep 6:35602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374

    Article  CAS  PubMed  Google Scholar 

  16. Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39:1507–1512

    Article  CAS  Google Scholar 

  17. Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  18. Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511

    Article  CAS  PubMed  Google Scholar 

  19. Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  20. Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    Article  CAS  Google Scholar 

  21. Wang Q, Zhu J, Reiner R, Verrill S, Baxa U, McNeil S (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047

    Article  CAS  Google Scholar 

  22. Wang Q, Zhu J, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5(7):2527–2534

    Article  CAS  PubMed  Google Scholar 

  23. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. JACS 80(6):1339–1339

    Article  CAS  Google Scholar 

  24. Wang W, Sabo RC, Mozuch MD, Kersten P, Zhu JY, Jin Y (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558

    Article  CAS  Google Scholar 

  25. Kulkarni A, Schulz KH, Lim T, Khan M (1999) Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films 345(2):273–277

    Article  Google Scholar 

  26. Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal Y (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater 9(10):840–845

    Article  CAS  PubMed  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  PubMed  Google Scholar 

  28. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  PubMed  Google Scholar 

  29. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc A 362(1824):2271–2288

    Article  CAS  Google Scholar 

  30. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014

    Article  CAS  Google Scholar 

  32. Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  PubMed  Google Scholar 

  34. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    Article  CAS  PubMed  Google Scholar 

  35. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  CAS  PubMed  Google Scholar 

  36. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812

    Article  CAS  PubMed  Google Scholar 

  37. Fernández-Merino MJ, Guardia L, Paredes J, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascon J (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432

    Article  CAS  Google Scholar 

  38. Dang LN, Seppälä J (2015) Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose 22(3):1799–1812

    Article  CAS  Google Scholar 

  39. Jiang H, Yang W, Chai S, Pu S, Chen F, Fu Q (2016) Property enhancement of graphene fiber by adding small loading of cellulose nanofiber. Nanocomposites 2(1):8–17

    Article  CAS  Google Scholar 

  40. Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ (2010) The role of intercalated water in multilayered graphene oxide. ACS Nano 4(10):5861–5868

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30

    Article  CAS  Google Scholar 

  42. Alqus R, Eichhorn SJ, Bryce RA (2015) Molecular dynamics of cellulose amphiphilicity at the graphene–water interface. Biomacromolecules 16(6):1771–1783

    Article  CAS  PubMed  Google Scholar 

  43. Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160–14167

    Article  CAS  Google Scholar 

  44. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from US Forest Service, USDA Agriculture and Food Research Initiative (AFRI) Competitive (Grant No. 2011-67009-20056), and the Chinese Scholarship Council (CSC) that made the visiting appointments of Wang and Ma at the Forest Products Laboratory possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Zhu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2974 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ma, Q., Zhang, H. et al. Producing Conductive Graphene–Nanocellulose Paper in One-pot. J Polym Environ 27, 148–157 (2019). https://doi.org/10.1007/s10924-018-1330-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1330-4

Keywords

Navigation