Skip to main content
Log in

Fast and Fully Scalable Synthesis of Graphene Oxide from Cellulose by Catalytic Acid Spray Method (CAS)

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) characterized by high electrical conductivity and thermal stability can be considered as a single monomolecular graphite layer, containing numerous functional oxygen groups such as epoxide, carbonyl, carboxyl and hydroxyl groups. Therefore, in this work, we have come to produce high quantities of GO sheets by innovative, simple and hydrazine-free methods based on rice straw, using catalytic acid spray method (CAS) in the presence of cobalt silicate nanoparticle as a catalyst. The structure of graphene oxide was characterized by FTIR, Raman, HR-TEM and DLS. FTIR shows that GO comprises some efficient hydroxyl (OH), epoxy (cyclic ether), carboxyl and carbonyl groups. XRD shows that the interlayer spacing of GO prepared by our techniques is higher to some extent than the interlayer spacing of other GO produced by another processes. We can say that, GO sheets can be produced for various applications, in large quantities, high efficiency and low cost, by adjusting the parameters such as acid strength or catalytic doses used in the CAS method. Thereby, we can overcome the weak inter-bond between the GO sheets without cracking them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fathy, M.; et al.: Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization. Appl. Nanosci. 4(5), 543–549 (2014)

    Article  Google Scholar 

  2. Randviir, E.P.; Brownson, D.A.C.; Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014)

    Article  Google Scholar 

  3. Ramzi, M.; El-Sayed, R.H.; Fathy, M.; Moghny, T.A.: Evaluation of scale inhibitors performance under simulated flowing field conditions using dynamic tube blocking test. Int. J. Chem. Sci. 14(1), 16–28 (2016)

    Google Scholar 

  4. Farrag, A.E.H.A.; Moghny, T.A.; Gad, A.M.; Saleem, S.S.; Fathy, M.; Ahmed, M.A.: Removing of hardness salts from groundwater by thermogenic synthesis zeolite. SDRP J. Earth Sci. Environ. Stud. 1, 109 (2016)

    Google Scholar 

  5. Farrag, A.E.H.A.; Moghny, T.A.; Gad, A.M.: SSSaleem, M Fathy, Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater. Egypt. Appl. Water Sci. 7, 3087 (2016). https://doi.org/10.1007/s13201-016-0435-y

    Article  Google Scholar 

  6. Farrag, A.; et al.: Removing of hardness salts from groundwater by thermogenic synthesis zeolite. J. Hydrogeol. Hydrol. Eng. 5(4), 9647 (2016). https://doi.org/10.4172/2325

    Article  Google Scholar 

  7. Fathy, M.; Abdel Moghny, T.; Awad, A.E.; AbdElhamid, : Cation exchange resin nanocomposites based on multi-walled carbon nanotubes. Appl. Nanosci. 4(1), 103–112 (2014)

    Article  Google Scholar 

  8. Xu, J.; Wang, Y.; Hu, S.: Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 184(1), 1–44 (2017)

    Article  Google Scholar 

  9. Lee, J.H.; et al.: Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium-air batteries. Theor. Chem. Acc. 135(3), 50 (2016)

    Article  Google Scholar 

  10. Fathy, M.; et al.: Nano composites of polystyrene divinylbenzene resin based on oxidized multi-walled carbon nanotubes. Int. J. Modern Org. Chem 2(1), 67–80 (2013)

    Google Scholar 

  11. Liang, K.; et al.: Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123(6), 445 (2017)

    Article  Google Scholar 

  12. Xu, Z.: Graphene oxides in filtration and separation applications. In: Gao, W. (ed.) Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, pp. 129–147. Springer, Cham (2015)

    Chapter  Google Scholar 

  13. Fathy, M.; et al.: Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin. Appl. Water Sci. 7(1), 309–313 (2017)

    Article  MathSciNet  Google Scholar 

  14. El-Sayed, M.; Ramzi, M.; Hosny, R.; Fathy, M.; Abdel, T.: Moghny, Breakthrough curves of oil adsorption on novel amorphous carbon thin film. Water Sci. Technol. 73(10), 2361–2369 (2016)

    Article  Google Scholar 

  15. Fathy, M.; El-Sayed, M.; Ramzic, M.; Abdelraheem, O.H.: Adsorption separation of condensate oil from produced water using ACTF prepared of oil palm leaves by batch and fixed bed techniques. Egypt. J. Pet. 27, 319 (2017)

    Article  Google Scholar 

  16. Magdy, A.; Wassel, M.F.; Hosny, R.; Desouky, A.M.; Mahmod, A.M.: Study the removal of cupper ions from textile effluent using cross linked chitosan. In: 8th International conferences of Textile Research Division (2017)

  17. Magdy, A.; Wassel, M.F.; Hosny, R.; Desouky, A.M.; Mahmod, A.M.; Abdelraheem, O.H.: Evaluation of chromium (Cr III) adsorption using modified chitosan from different pH aqueous solutions. In: 9th International Conference On Chemical and Environmental Engineering (2018)

  18. Fathy, M.; Abdel Moghny, T.; Abdou, M.M.; El-Bellihi, A.-H.A.-A.: Study the adsorption of Ca (II) and Mg (II) on high cross linked polystyrene divinyl benzene resin. Int. J. Modern. Chem. 7(1), 36–44 (2015)

    Google Scholar 

  19. Mahmoud Fathy, T.A.M.; Mousa, M.A.; ElBellihi, A.-H.A.-A.; Awadallah, A.E.: Sulfonated ion exchange polystyrene composite resin for calcium hardness removal. Int. J. Emerg. Technol. Adv. Eng. 5(10), 20–29 (2015)

    Google Scholar 

  20. Fathy, M.; Moghny, T.A.; Mousa, M.A.; El-Bellihi, A.-H.A.-A.; Awadallah, A.E.: Synthesis of transparent amorphous carbon thin films from cellulose powder in rice straw. Arab. J. Sci. Eng. 42, 225 (2016). https://doi.org/10.1007/s13369-016-2273-5

    Article  Google Scholar 

  21. Rosaiah, P.; et al.: Synthesis of flower-like reduced graphene oxide-Mn3O4 nanocomposite electrodes for supercapacitors. Appl. Phys. A 124(9), 597 (2018)

    Article  Google Scholar 

  22. Ramzi, M.; et al.: Breakthrough curves of oil adsorption on novel amorphous carbon thin film. Water Sci Technol. 73(10), 2361 (2016)

    Article  Google Scholar 

  23. Fathy, M.; Moghny, T.A.; Mousa, M.A.; El-Bellihi, A.-H.A.-A.; Awadallah, A.E.: Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models. Appl. Nanosci. 6, 1105 (2016). https://doi.org/10.1007/s13204-016-0537-8

    Article  Google Scholar 

  24. Bolagam, R.; Boddula, R.; Srinivasan, P.: Design and synthesis of ternary composite of polyaniline-sulfonated graphene oxide-TiO2 nanorods: a highly stable electrode material for supercapacitor. J. Solid State Electrochem. 22(1), 129–139 (2018)

    Article  Google Scholar 

  25. Nagarani, S.; et al.: Synthesis and characterization of binary transition metal oxide/reduced graphene oxide nanocomposites and its enhanced electrochemical properties for supercapacitor applications. J. Mater. Sci. Mater. Electr. 29(14), 11738–11748 (2018)

    Article  Google Scholar 

  26. Moghny, T.A.; et al.: Preparation of sorbent materials for the removal of hardness and organic pollutants from water and wastewater. World Acad. Sci. Eng. Technol. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 11(5), 461–468 (2017)

    Google Scholar 

  27. Moghny, M.F.M.A.M.T.A.: Characterization and evaluation of amorphous carbon thin film (ACTF) for sodium ion adsorption. Appl. Water Sci. 7, 4427 (2017). https://doi.org/10.1007/s13201-017-0588-3

    Article  Google Scholar 

  28. Ali, A.; Bahadur Rahut, D.; Behera, B.: Factors influencing farmersx adoption of energy-based water pumps and impacts on crop productivity and household income in Pakistan. Renew. Sustain. Energy Rev. 54, 48–57 (2016)

    Article  Google Scholar 

  29. Ali, M.E.A.; et al.: Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386, 67–76 (2016)

    Article  Google Scholar 

  30. Ammar, A.I.; Kruse, S.E.: Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian Shield, Saudi Arabia. J. Afr. Earth Sci. 116, 56–67 (2016)

    Article  Google Scholar 

  31. Alvino, A.; Barbieri, G.: Vegetables of temperate climates: leafy vegetables A2 - Caballero, Benjamin. In: Finglas, P.M., Toldrá, F. (eds.) Encyclopedia of Food and Health, pp. 393–400. Academic Press, Oxford (2016)

    Chapter  Google Scholar 

  32. Lin, Y.-C.; et al.: The synthesis and characterization of graphene oxides based on a modified approach. J. Therm. Anal. Calorim. 116(3), 1249–1255 (2014)

    Article  Google Scholar 

  33. Li, J.; et al.: Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. J. Taiwan Inst. Chem. Eng. 59, 389–394 (2016)

    Article  Google Scholar 

  34. Singh, R.; Kumar, D.; Tripathi, C.C.: Concentration enhancement of liquid phase exfoliated graphene with addition of organic salts. Proc. Comput. Sci. 70, 565–571 (2015)

    Article  Google Scholar 

  35. Gupta, S.; Carrizosa, S.B.: Graphene-inorganic hybrids with cobalt oxide polymorphs for electrochemical energy systems and electrocatalysis: synthesis, processing and properties. J. Electr. Mater. 44(11), 4492–4509 (2015)

    Article  Google Scholar 

  36. Wang, K.: Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front. Chem. Sci. Eng. 12(3), 376–382 (2018)

    Article  Google Scholar 

  37. Prince, J.A.; et al.: Ultra-wetting graphene-based membrane. J. Membr. Sci. 500, 76–85 (2016)

    Article  Google Scholar 

  38. Justh, N.; et al.: Thermal analysis of the improved Hummers’ synthesis of graphene oxide. J. Therm. Anal. Calorim. 131(3), 2267–2272 (2018)

    Article  Google Scholar 

  39. Sun, W.; et al.: Synthesis of magnetic graphene nanocomposites decorated with ionic liquids for fast lead ion removal. Int. J. Biol. Macromol. 85, 246–251 (2016)

    Article  Google Scholar 

  40. Timofeeva, T.E.; et al.: The effect of temperature conditions during graphene oxide synthesis on humidity dependence of conductivity in thermally reduced graphene oxide. J. Struct. Chem. 59(4), 799–805 (2018)

    Article  Google Scholar 

  41. Khatmi Maab, N.Z.; Shokuhfar, A.; Ahmadi, S.: The effect of temperature and type of peroxide on graphene synthesized by improved Hummers’ method. Int. Nano Lett. 6(4), 211–214 (2016)

    Article  Google Scholar 

  42. Zhu, Y.; et al.: Monolithic supermacroporous hydrogel prepared from high internal phase emulsions (HIPEs) for fast removal of Cu2+ and Pb2+. Chem. Eng. J. 284, 422–430 (2016)

    Article  Google Scholar 

  43. Jilani, A.; et al.: Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environ. Chem. Lett. 16, 1301 (2018)

    Article  Google Scholar 

  44. Xue, X.; et al.: Synthesis of graphene oxide nanosheets for the removal of Cd(II) ions from acidic aqueous solutions. J. Taiwan Inst. Chem. Eng. 59, 365–372 (2016)

    Article  Google Scholar 

  45. Gunda, R.; Madireddy, B.S.; Dash, R.K.: Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3. Appl. Nanosci. 8(4), 751–758 (2018)

    Article  Google Scholar 

  46. Thiagarajan, K.; et al.: Synthesis of Ni3V2O8@graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. J. Solid State Electrochem. 22(2), 527–536 (2018)

    Article  Google Scholar 

  47. Hosny, R.; et al.: Treatment of the oily produced water (OPW) using coagulant mixtures. Egypt. J. Pet. 25(3), 391–396 (2016)

    Article  MathSciNet  Google Scholar 

  48. Xu, K.; et al.: Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chem. Eng. Sci. 146, 159–165 (2016)

    Article  Google Scholar 

  49. Xu, X.; et al.: Design and fabrication of mesoporous graphene via carbothermal reaction for highly efficient capacitive deionization. Electrochim. Acta 188, 406–413 (2016)

    Article  Google Scholar 

  50. Stewart, D.A.; Mkhoyan, K.A.: Graphene oxide: synthesis, characterization, electronic structure, and applications. In: Raza, H. (ed.) Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications, pp. 435–464. Springer, Berlin (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Fathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathy, M., Moghny, T.A. & Mousa, M.A. Fast and Fully Scalable Synthesis of Graphene Oxide from Cellulose by Catalytic Acid Spray Method (CAS). Arab J Sci Eng 44, 305–313 (2019). https://doi.org/10.1007/s13369-018-3648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3648-6

Keywords

Navigation