Skip to main content

Advertisement

Log in

Fully Bio-Sourced Nylon 11/Raw Lignin Composites: Thermal and Mechanical Performances

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ecofriendly fully bio-composites based on polyamide 11 (PA11) and lignin have been prepared on the entire concentration range using a twin-screw extruder. In this work, PA11 was blended with lignin by direct extrusion technology without any chemical pre- or in-situ- modifications or physical pretreatments. The presence of various organic and inorganic impurities in the selected technical lignin have been maintained. The incorporation of this cheap renewable material from biomass in bio-based PA11 was inspected by an array of characterization tools. Also, the effect of the presence of lignin on the morphology and on the mechanical properties of the resulting materials was examined. Finally, in-situ investigation of structural evolution in PA11 induced by the presence of lignin was analyzed by Fast Scanning Chip Calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Niaounakis M (2015) Biopolymers: applications and trends. Elsevier, New York, 978-0-323-35399-1

    Google Scholar 

  2. Zierdt P, Theumer T, Kulkarni G, Däumlich V, Klehm J, Hirsch U, Weber A (2015) Sustain Mater Technol 6:6

    CAS  Google Scholar 

  3. Brebu M, Vasile C (2010) Cell Chem Technol 44:353

    CAS  Google Scholar 

  4. Delmas M (2008) Chem Eng Technol 31:792

    Article  CAS  Google Scholar 

  5. Kamm B, Kamm M (2004) Appl Microbiol Biotechnol 64:137

    Article  CAS  Google Scholar 

  6. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484

    Article  CAS  Google Scholar 

  7. Brodin I, Ernstsson M, Gellerstedt G, Sjöholm E (2012) Holzforschung 66:141

    Article  CAS  Google Scholar 

  8. Kadla JF, Kubo S (2003) Macromolecules 36:7803

    Article  CAS  Google Scholar 

  9. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, CW Griffith (2002) Carbon 40:2913

    Article  CAS  Google Scholar 

  10. Kubo S, Kadla JF (2005) J Polym Environ 13:97

    Article  CAS  Google Scholar 

  11. Ramasubramanian G (2013) Graduate Theses and Dissertations. Paper 13438

  12. Thunga M, Chen K, Grewell D, Kessler MR (2014) Carbon 68:159

    Article  CAS  Google Scholar 

  13. Canetti M, Bertini F, De Chirico A, Audisio G (2006) Polym Degrad Stab 91:494

    Article  CAS  Google Scholar 

  14. Dawson BSW, Singh AP, Kroese HW, Schwitzer MA, Gallagher S, Riddiough SJ, Wu SHJ (2008) J Coat Technol Res 5:193

    Article  CAS  Google Scholar 

  15. Ismail T, Abu Hassan H, Hirose S, Taguchi Y, Hatakeyama T, Hatakeyama H (2010) Polym Int 59:181

    CAS  Google Scholar 

  16. Košíková B, Gregorová A, Osvald A, Krajcŏvicŏva J (2007) J Appl Polym Sci 103:1226

    Article  Google Scholar 

  17. Li J, He Y, Inoue Y (2003) Polym Int 52:949

    Article  CAS  Google Scholar 

  18. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Polym Degrad Stab 81:9

    Article  CAS  Google Scholar 

  19. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller MA, Naskar K (2012) Green Chem 14:3295

    Article  CAS  Google Scholar 

  20. Alexy P, Košíková B, Podstránska G (2000) Polymer 41:4901

    Article  CAS  Google Scholar 

  21. Kubo S, Kadla JF (2005) Biomacromolecules 6:2815

    Article  CAS  Google Scholar 

  22. Laurichesse S, Avérous L (2014) Progress in Polym Sci 39:1266

    Article  CAS  Google Scholar 

  23. Sadeghifar H, Cui C, Argyropoulos DS (2012) Ind Eng Chem Res 51:16713

    Article  CAS  Google Scholar 

  24. Sailaja RRN, Deepthi MV (2010) Mater Des 31:4369

    Article  CAS  Google Scholar 

  25. Mousavioun P, Doherty WOS, George G (2010) Ind Crops Prod 32:656

    Article  CAS  Google Scholar 

  26. Rahman MA, De Santis D, Spagnoli G, Ramorino G, Penco M, Phuong VT, Lazzeri A (2013) J Appl Polym Sci https://doi.org/10.1002/APP.38705

    Article  Google Scholar 

  27. Nitz H, Semke H, Mülhaupt R (2001) Macromol Mater Eng 286:737

    Article  CAS  Google Scholar 

  28. Kolesov I, Androsh R, Mileva D, Lebek W, Benhamida A, Kaci M, Focke W (2013) Colloid Polym Sci 291:2541

    Article  CAS  Google Scholar 

  29. Mollova A, Androsch R, Mileva D, Schick C, Benhamida A (2013) Macromolecules 46:828

    Article  CAS  Google Scholar 

  30. Stoclet G, Sclavons M, Devaux J (2013) J Appl Polym Sci https://doi.org/10.1002/APP.38053

    Article  Google Scholar 

  31. Zhang G, Li Y, Yan D (2004) J Polym Sci Part B Polym Phys 42:253

    Article  CAS  Google Scholar 

  32. Carlier V, Sclavons M, Legras R (2001) Polymer 42:5327

    Article  CAS  Google Scholar 

  33. Kubo S, Kadla JF (2005) J Appl Polym Sci 98:1437

    Article  CAS  Google Scholar 

  34. Kubo S, Kadla JF (2004) Macromolecules 37:6904

    Article  CAS  Google Scholar 

  35. Sallem-Idrissi N, Vanderghem C, Pacary T, Richel A, Debecker DP, Devaux J, Sclavons M (2016) J Appl Polym Sci https://doi.org/10.1002/APP.42963

    Article  Google Scholar 

  36. Sahoo S, Seydibeyoglu M, Mohanty AK, Misra M (2011) Biomass Bioenergy 35:4230

    Article  CAS  Google Scholar 

  37. Mishra SB, Mishra AK, Kaushik NK, Khan MA (2007) J Mater Process Technol 183:273

    Article  CAS  Google Scholar 

  38. Paul DR, Bucknall CB (2000) Polymer blends: formulation and performance, 1. John Wiley & Sons, Hoboken, pp 539–579

    Google Scholar 

  39. Woo EM, Wu MN (1996) Polymer 37:907

    Google Scholar 

  40. Schawe JEK (1998) J Polym Sc Part B Polym Phys 36:2165

    Article  CAS  Google Scholar 

  41. Schawe JEK (2002) Elastomers Collected applications thermal analysis, 1. Mettler Toledo, Columbus, pp 35–46

    Google Scholar 

  42. Bittencourt PRS, Fernandes DM, Silva MF, Lima MK, Hechenleitner AAW, Pineda EAG (2010) Waste Biomass Valor 1:323

    Article  Google Scholar 

  43. Stoclet G, Seguela R, Lefebvre J-M (2011) Polymer 52:1417

    Article  CAS  Google Scholar 

  44. Zhang Q, Yu M, Fu Q (2004) Polym Int 53:1941

    Article  CAS  Google Scholar 

  45. Wu M, Yang G, Wang M, Wang W, Zhang W-D, Feng J, Liu T (2008) Mater Chem Phys 109:547

    Article  CAS  Google Scholar 

  46. Reckinger C, Rault J (1986) Revue Phys Appl 21:11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Walloon Region (DEXPLIMAR Project No. 6758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sallem-Idrissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallem-Idrissi, N., Van Velthem, P. & Sclavons, M. Fully Bio-Sourced Nylon 11/Raw Lignin Composites: Thermal and Mechanical Performances. J Polym Environ 26, 4405–4414 (2018). https://doi.org/10.1007/s10924-018-1311-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1311-7

Keywords

Navigation