Skip to main content
Log in

Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Fast scanning chip calorimetry (FSC) has been used for analysis of the crystallization behavior of a polyamide 11/organo-modified montmorillonite (PA 11/OMMT) nanocomposite. The addition of OMMT leads to a significant increase of the crystallization temperature of the polymer matrix only on cooling faster than about 100 K s–1. In case of slow cooling at rates typically used in standard differential scanning calorimetry (DSC), the nucleating effect of OMMT on crystallization of PA 11 is negligible. The critical cooling rate to suppress crystallization of PA 11 and to completely vitrify the relaxed melt increases at least by one order of magnitude due to the addition of OMMT. Furthermore, the enthalpy of crystallization is nearly independent on the cooling conditions in the analyzed cooling rate range from 10–2 to 2 × 103 K s–1 in PA 11/OMMT nanocomposites. Isothermal crystallization experiments confirmed that the nucleating effect of OMMT on the crystallization of PA 11 increases with supercooling, being therefore of particular importance at cooling conditions relevant in polymer processing. The evaluation of the kinetics of crystallization of the PA 11/OMMT nanocomposite by FSC and DSC in a wide range of cooling rates/supercooling has been completed by analysis of the effect of OMMT on the α/δ’ polymorphism of PA 11 and the spherulitic superstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rilsan Product Information. http://www.arkema.com/en/products/product-finder/range-viewer/Rilsan-Arkema. Accessed 29 May 2013

  2. Genas M (1962) Rilsan (Polyamid 11), Synthese und Eigenschaften. Angew Chemie 74:535–540

    Article  CAS  Google Scholar 

  3. Zhang Q, Yu M, Fu Q (2004) Crystal morphology and crystallization kinetics of polyamide-11/clay nanocomposites. Polym Int 53:1941–1949

    Article  CAS  Google Scholar 

  4. Fornes TD, Paul DR (2004) Structure and properties of nanocomposites based on Nylon-11 and −12 compared with those based on Nylon-6. Macromolecules 37:7698–7709

    Article  CAS  Google Scholar 

  5. Liu T, Lim KP, Tjiu WC, Pramoda KP, Chen ZK (2003) Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer 44:3529–3535

    Article  CAS  Google Scholar 

  6. Lao SC, Koo JH, Moon TJ, Londa M, Ibeh CC, Wissler GE, Pilato LA (2011) Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies. J Fire Sci 29:479–498

    Article  CAS  Google Scholar 

  7. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44:4993–5013

    Article  CAS  Google Scholar 

  8. Wilkinson AN, Man Z, Stanford JL, Matikainen P, Clemens ML, Lees GC, Liauw CM (2007) Tensile properties of melt intercalated polyamide 6—montmorillonite nanocomposites. Comp Sci Techn 67:3360–3368

    Article  CAS  Google Scholar 

  9. Chavarria F, Paul DR (2004) Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer 45:8501–8515

    Article  CAS  Google Scholar 

  10. Wu Q, Liu X, Berglund A (2001) An unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macromol Rap Comm 22:1438–1440

    Article  CAS  Google Scholar 

  11. Liu X, Wu Q, Berglund LA (2002) Investigation on unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macromol Mat Eng 287:515–522

    Article  CAS  Google Scholar 

  12. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progr Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  13. Homminga DS, Goderis B, Mathot VBF, Groeninckx G (2006) Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration. Polymer 47:1630–1639

    Article  CAS  Google Scholar 

  14. Fornes TD, Paul DR (2003) Crystallization behavior of Nylon 6 nanocomposites. Polymer 44:3945–3961

    Article  CAS  Google Scholar 

  15. Mileva D, Monami A, Cavallo D, Alfonso GC, Portale G, Androsch R (2013) Crystallization of a polyamide 6/montmorillonite nanocomposite at rapid cooling. Macromol Mat Eng. doi:10.1002/mame.201200253

    Google Scholar 

  16. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63

    Article  CAS  Google Scholar 

  17. Minakov AA, Mordvintsev DA, Schick C (2005) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s−1; 5 ms). Faraday Discuss 128:261–270

    Article  CAS  Google Scholar 

  18. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902

    Article  Google Scholar 

  19. Kim KG, Newman BA, Scheinbeim JI (1985) Temperature dependence of the crystal structures of Nylon 11. J Polym Sci Polym Phys 23:2477–2482

    Article  CAS  Google Scholar 

  20. Nair SS, Ramesh C, Tashiro K (2006) Polymorphism in nylon 11: characterization using HTWAXS and HTFTIR. Macromol Symp 242:216–226

    Article  CAS  Google Scholar 

  21. Gogolewski S (1979) Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 11 (polyundecaneamide). Coll Polym Sci 257:811–819

    Article  CAS  Google Scholar 

  22. Mathias LJ, Powell DG, Autran JP, Porter RS (1990) 15N NMR characterization of multiple crystal forms and phase transitions in polyundecanamide (Nylon 11). Macromolecules 23:963–967

    Article  CAS  Google Scholar 

  23. Zhang Q, Mo Z, Zhang H, Liu S, Cheng SZD (2001) Crystal transitions of Nylon 11 under drawing and annealing. Polymer 42:5543–5547

    Article  CAS  Google Scholar 

  24. Brill R (1956) Beziehungen zwischen Wasserstoffbindung und einigen Eigenschaften von Polyamiden. Makromol Chemie 18:294–309

    Article  Google Scholar 

  25. Slichter WP (1959) Crystal structures in polyamides made from ω-amino acids. J Polym Sci 36:259–266

    Article  CAS  Google Scholar 

  26. Little K (1959) Investigation of Nylon “texture” by X-ray diffraction. Brit J Appl Phys 10:225–230

    Article  CAS  Google Scholar 

  27. Newman BA, Sham TP, Pae KD (1977) A high-pressure x-ray study of Nylon 11. J Appl Phys 48:4092–4098

    Article  CAS  Google Scholar 

  28. Zhang Q, Mo Z, Liu S, Zhang H (2000) Influence of annealing on structure of Nylon 11. Macromolecules 33:5999–6005

    Article  CAS  Google Scholar 

  29. Advanced Thermal Analysis System data bank. http://athas.prz.rzeszow.pl/. Accessed 29 May 2013

  30. Inoue M (1963) Studies on crystallization of high polymers by differential thermal analysis. J Polym Sci Part A 1:2697–2709

    CAS  Google Scholar 

  31. Magill JH (1969) Formation of spherulites in polyamides. IV. Even-odd polyamides and poly(ω-aminocarboxylic acids). J Polym Sci 7:123–142, Part A-2

    CAS  Google Scholar 

  32. Schmidt GF, Stuart HA (1958) Gitterstrukturen mit räumlichen Wasserstoffbrückensystemen und Gitterumwandlungen bei Polyamiden. Zeitschr Naturforschung (A) 13:222–225

    Google Scholar 

  33. Mollova A, Androsch R, Mileva D, Schick C, Benhamida A (2013) Effect of supercooling on crystallization of polyamide 11. Macromolecules 46:828–835

    Article  CAS  Google Scholar 

  34. Rilsan T Naturelle BHV 2, Technical data sheet, Atofina.

  35. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J. doi:10.1016/j.eurpolymj.2013.01.015

    Google Scholar 

  36. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  37. Kolesov I, Mileva D, Androsch R, Schick C (2011) Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 52:5156–5165

    Article  CAS  Google Scholar 

  38. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522:36–45

    Article  CAS  Google Scholar 

  39. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52

    Article  Google Scholar 

  40. Iervolino E, van Herwaarden AW, van Herwaarden FG, van de Kerkhof E, van Grinsven PPW, Leenaers ACHI, Mathot VBF, Sarro PM (2011) Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:53–59

    Article  CAS  Google Scholar 

  41. Data obtained on PA 11 were adapted with permission from Macromolecules 46:828–835. Copyright (2013) American Chemical Society

  42. Hoffmann JD, Davis GT, Lauritzen JI (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay HB (ed) Treatise on solid state chemistry, crystalline and noncrystalline solids, vol 3. Plenum Press, New York

    Google Scholar 

  43. Wunderlich B (1976) Macromolecular physics, vol. 2. Crystal nucleation, growth, annealing. Academic Press, New York

    Google Scholar 

  44. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rap Comm 28:875–881

    Article  CAS  Google Scholar 

  45. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  Google Scholar 

  46. Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Coll Polym Sci 290:465–471

    Article  CAS  Google Scholar 

  47. Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R (2012) Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher alpha-olefins. Polymer 53:4429–4437

    Article  CAS  Google Scholar 

  48. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(ε-caprolactone). Polymer 52:1983–1997

    Article  CAS  Google Scholar 

  49. Hirami H (1984) SAXD studies on bulk crystallization of nylon 6. I. Changes in crystal structure, heat of fusion, and surface free energy of lamellar crystals with crystallization temperature. J Macromol Sci Phys B23:397–414

    Article  Google Scholar 

  50. Androsch R, Stolp M, Radusch HJ (1996) Crystallization of amorphous polyamides from the glassy state. Acta Polym 47:99–104

    Article  CAS  Google Scholar 

  51. Martuscelli E (1984) Influence of composition, crystallization conditions and melt phase structure on solid morphology, kinetics of crystallization and thermal behavior of binary polymer/polymer blends. Polym Eng Sci 24:563–586

    Article  CAS  Google Scholar 

  52. Doyle MJ (2000) On the effect of crystallinity on the elastic properties of semicrystalline polyethylene. Polym Eng Sci 40:330–335

    Article  CAS  Google Scholar 

  53. Boyd RH (1983) The mechanical moduli of lamellar semicrystalline polymers. J Polym Sci Polym Phys 21:493–504

    Article  CAS  Google Scholar 

  54. Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39:2445–2460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG) (grant AN 212/9) is gratefully acknowledged. Furthermore, we thank Wiebke Grote (University Pretoria) for the X-ray analysis of OMMT exfoliation and Stefanie Scholtyssek (Martin-Luther-University Halle-Wittenberg) for the preparation of the cryo-microtomed ultrathin sections for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Androsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, I., Androsch, R., Mileva, D. et al. Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling. Colloid Polym Sci 291, 2541–2549 (2013). https://doi.org/10.1007/s00396-013-2977-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2977-y

Keywords

Navigation