Skip to main content
Log in

Organogel Polymers from 10-Undecenoic Acid and Poly(vinyl acetate)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing production of this product requires synthesis of vinyl esters containing medium length carboxylic chains. This starting material must be made from an expensive and low yielding transvinylation reaction, which leaves production of useful vinyl esters and, as a result, the organogels themselves, outside the realm of practical chemistry. We have developed a new, more practical production process and used it to directly synthesize a new polymer. This new process utilizes commercially available polyvinyl acetate and accomplishes the transformation with simple hydrolysis and anhydride addition steps. The new polymers form organogels with chloroform, acetone or toluene with swell ratios up to 30. They also show time-controlled release of crystal violet over a 100 h span. This new production process opens the possibility of producing organogels utilizing agricultural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang CJ, Swift G (1999) J Macromol Sci Pure Appl Chem 36A:963–970

    Article  Google Scholar 

  2. Hoffman AS (2002) Adv Drug Deliv Rev 54:3–12

    Article  CAS  PubMed  Google Scholar 

  3. Shogren RL, Doll KM, Willett JL, Swift G (2009) J Polym Environ 17:103–108

    Article  CAS  Google Scholar 

  4. Demirel YT, Yati I, Donmez R, Sonmez HB (2017) Chem Eng J 312:126–135

    Article  CAS  Google Scholar 

  5. Kizil S, Karadag K, Aydin GO, Sonmez HB (2015) J Environ Manag 149:57–64

    Article  CAS  Google Scholar 

  6. Krishnan GR, Yuan Y, Arzumand A, Sarkar D (2014) J Polym Sci A 52:1917–1928

    Article  CAS  Google Scholar 

  7. Duncan TT, Berrie BH, Weiss RG (2017) ACS Appl Mater Interfaces 9:28069–28078

    Article  CAS  PubMed  Google Scholar 

  8. Bolto B, Tran T, Hoang M, Xie Z (2009) Prog Polym Sci 34:969–981

    Article  CAS  Google Scholar 

  9. Onyari JM, Huang SJ (2009) J Appl Polym Sci 113:2053–2061

    Article  CAS  Google Scholar 

  10. Carlotti SJ, Giani-Beaune O, Schué F (2001) J Appl Polym Sci 80:142–147

    Article  CAS  Google Scholar 

  11. Markley TJ, Pinschmidt RK Jr, Vanderhoff JW (1996) J Polym Sci A 34:2581–2594

    Article  CAS  Google Scholar 

  12. Ziriakus J, Zimmermann TK, Pöthig A, Drees M, Haslinger S, Jantke D, Kühn FE (2013) Adv Synth Catal 355:2845–2859

    Article  CAS  Google Scholar 

  13. Wallace JM, Copenhaver JE (1941) J Am Chem Soc 63:699–700

    Article  CAS  Google Scholar 

  14. Research Disclosures (1994) 363:338

  15. Moritani T, Kajitani K (1997) Polymer 38:2933–2945

    Article  CAS  Google Scholar 

  16. Isasi JR, Cesteros LC, Katime I (1994) Macromolecules 27:2200–2205

    Article  CAS  Google Scholar 

  17. Olaru RN, Vuluga DM, Georgescu F, Marinescu D, Dimonie M (2010) UPB Sci Bull B Chem Mater Sci 72:77–84

    CAS  Google Scholar 

  18. Chetri P, Dass NN, Sarma NS (2006) J Appl Polym Sci 102:5675–5679

    Article  CAS  Google Scholar 

  19. Co ED, Marangoni AG (2012) J Am Oil Chem Soc 89:749–780

    Article  CAS  Google Scholar 

  20. Doan CD, Tavernier I, Okuro PK, Dewettinck K (2018) Innov Food Sci Emerg Technol 45:42–52

    Article  CAS  Google Scholar 

  21. Daniel J, Rajasekharan R (2003) J Am Oil Chem Soc 80:417–421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gary D. Grose for the CNH analysis and Karl L. Vermillion for the NMR spectroscopy in this report. This work was a part of the in-house research of the Agricultural Research Service of the United States Department of Agriculture.

Funding

The funding was provided by Agricultural Research Service (Grant No. 5010-41000-170-00D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Doll.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doll, K.M., Walter, E.L., Murray, R.E. et al. Organogel Polymers from 10-Undecenoic Acid and Poly(vinyl acetate). J Polym Environ 26, 3670–3676 (2018). https://doi.org/10.1007/s10924-018-1241-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1241-4

Keywords

Navigation