Skip to main content
Log in

Degradability Characterization of EPDM/IIR Blends by γ-irradiation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this paper the modifications induced in butyl rubbers (pristine, chlorinated and brominated sorts) by γ-irradiation are investigated by swelling, chemiluminescence and FT-IR. The susceptibility of butyl rubbers for the generation of radicals orders their stabilities in the following sequence: IIR > IIR—Cl > IIR—Br. The incorporation of butyl rubbers into ethylene-propylene terpolymer matrix brings about increased densities of radicals initiating modifications in the oxidation state in respect with recombination, which are intensified as the processing dose increases. Based on the variation of carbonyl and hydroxyl indices the favorable route for the recycling EPDM based formulations would be suggested in this study. The chemiluminescence spectra proving the formation of peroxyl radicals at about 100 °C prove their availability as reclaiming solutions. IIR—Br is the recommendable butyl rubber for the recovery procedure by association with EPDM. The suitability of IIRs for recycling purposes is analyzed by the variation in their crosslink densities, free volumes and swelling degrees. The crosslinking behavior of stabilized EPDM/IIR blends that runs to the improvement of durability is depicted by Charlesby–Pinner representation, which involves the different simultaneous contribution of scission and crosslinking processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Burillo G, Clough RL, Czvikovszky T, Guven O, Le Moel A, Liu WW, Singh A, Yang JT, Zaharescu T (2002) Radiat Phys Chem 64:41

    Article  CAS  Google Scholar 

  2. Sinha V, Patel MR, Patel JV (2010) J Polym Environ 18:8

    Article  CAS  Google Scholar 

  3. Khan WS, Asmatulu R, Davuluri S, Dandin VK (2014) J Mater Sci Technol 30:854

    Article  CAS  Google Scholar 

  4. Enomoto I, Katsumura Y, Kube H, Sekiguchi M (2010) Radiat Phys Chem 7:718

    Article  Google Scholar 

  5. Johnson J (2014) Post-consumer plastic recycling rates continue strong growth. Plastics News Report

  6. Marsh K, Bugusu B (2007) Food J Food Sci 72:R39

    Article  CAS  Google Scholar 

  7. EEA—European Environment Agency Report (2016) Most recent data: Further Eurostat Information. Main tables and database

  8. Pritchard G (1999) Reinforced plastics durability, ch. 2. CRC, Boca Raton

    Book  Google Scholar 

  9. IAEA—International Atomic Energy Agency (2004) Advances in radiation chemistry of polymers. TECDOC 1420

  10. IAEA—International Atomic Energy Agency (2009) Controlling of degradation effects in radiation processing of polymers. TECDOC 1617

  11. Zaharescu T, Jipa S, Setnescu R, Setnescu T (2000) J Appl Polym Sci 77:982

    Article  CAS  Google Scholar 

  12. A. G. Chmielewski, M. Haji-Saeid and Ahmed S (2005) Nucl. Instrum. Meth. Phys. Res. B236 44

  13. Martínez-López M, Martínez-Barrera G, Barrera-Díaz CE, Ureña-Nuñez F, Loredo dos Reis JM (2016) Constr Build Mater 121:1

    Article  Google Scholar 

  14. Wang BL, Xu ZY, Zeng XM, Ma SM, Zang YX, Sun DM (1993) Radiat Phys Chem 42:215

    Article  CAS  Google Scholar 

  15. Barttacharya A (2000) Prog Polym Sci 25:371

    Article  Google Scholar 

  16. Teinov AV, Zavyalov NV, Khokhlov YA, Sitnikov NP, Smetanin ML, Tarantasov VP, Shadrin DN, Shorikov IV, Liakumovici A. L., F. K. Miryasova (2002) Radiat Phys Chem 63:245

    Article  Google Scholar 

  17. Karaağaç B, Şen M, Deniz V, Güven O (2007) Nucl Instrum Meth Phys Res B265:290

    Article  Google Scholar 

  18. Smith M, Berlioz S, Chailan JF (2013) Polym Degrad Stab 98:682

    Article  CAS  Google Scholar 

  19. Botros SH (1998) Polym Degrad Stab 62:471

    Article  CAS  Google Scholar 

  20. Singh RP, Chandra R (1982) Polym Photochem 2:257

    Article  CAS  Google Scholar 

  21. Davenas J, Stevenson I, Celette N, Vigier N, David L (2003) Nucl Instrum Meth Phys Res B208:461

    Article  Google Scholar 

  22. Abou Zeid MM, Rabie ST, Nada AA, Khalil AM, Hilal RH (2008) Nucl Instrum Meth Phys Res B266&:p 111t;/bib>

  23. Özdemir T (2008) Radiat Phys Chem 77:787

    Article  Google Scholar 

  24. Hacioğlu F, Özdemir T, Çavdar S, Usanmaz A (2013) Radiat Phys Chem 83:122

    Article  Google Scholar 

  25. Zaharescu T, Jipa S, Giurginca M, Podină C (1998) Polym Degrad Stab 62:569

    Article  CAS  Google Scholar 

  26. Chipară MD, Grecu VV, Chipară MI, C. Ponta, J. Reyes Romero (1999) Nucl Instrum Meth Phys Res B151:444

    Article  Google Scholar 

  27. El-Sabbagh SH (2003) J Appl Polym Sci 90:1

    Article  CAS  Google Scholar 

  28. Tostar S, Stenvall E, M. R. S. J. Foreman, Boldizar A (2016) Recycling 1&:p 101t;/bib>

  29. M. H. Haji-Saeid, M. E. Sampa, N. Ramamoorty, A. Chmielewski, O. Güven (2007) Nucl Instrum Meth Phys Res B265&:p 51t;/bib>

  30. Zaharescu T, Cazac C, Jipa S, Setnescu R (2001) Nucl Instrum Meth Phys Res 185&:p 360t;/bib>

  31. Manaila E, Stelescu D, Craciun G (2012) In: Boczkowska A (ed) Polymer series—advanced elastomers. Technology, properties and applications, ch. 1. INTECH, Rijeka

    Google Scholar 

  32. Zaharescu T, L. I. P. Kayan, Lungulescu ME, Parra DF, Lugão AB (2016) Iranian Polym J 25:725

    Article  CAS  Google Scholar 

  33. Allen NS, Hoang E, Liauw CM, Edge M, Fontan E (2001) Polym Degrad Stab 72&:p 367t;/bib>

  34. Carlsson DJ, Čhmela S, Weiss DM (1989) Makromol Chem Macromol Symp 27&:p 139t;/bib>

  35. Barton AFM (1991) In: Handbook of solubility parameters and other cohesion parameters, 2nd edition. CRC Press, Boca Raton

    Google Scholar 

  36. Luo Y-R (2007) Comprehensive handbook of chemical bond energies. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  37. Makuuchi K, Cheng S (2012) Radiation processing of polymer materials and its industrial applications. (Wiley, New York

    Book  Google Scholar 

  38. Wood RJ, Pikaev AK (1993) Applied Radiation Chemistry. Wiley, New York

    Google Scholar 

  39. Zaharescu T, Jipa S, Giurginca M (1998) J Macromol Sci Pure Appl Chem A35:1093

    Article  CAS  Google Scholar 

  40. Šećerov B, Marino-Cincović M, Popović S, Nedić Z, Kačarević-Popović Z (2008) Polym Bull 60:313

    Article  Google Scholar 

  41. Mateescu G (1982) In: FTIR Spectroscopy. Romanian Academy Printing House, Bucharest, p.<background-color:#96C864;> </background-color:#96C864;>235

    Google Scholar 

  42. Rivaton A, Cambon S, J–L. Gardette (2006) Polym Degrad Stab 91:136

    Article  CAS  Google Scholar 

  43. Zaharescu T, Zen HA, Marinescu M, Scagliusi SR, E. C. L. Cardoso, Lugão AB, Chem (2016) Papers 70&:p 459t;/bib>

  44. Fearon PK, Whiteman DJ, Billingham NC, Bigger SW (2001) J Appl Polym Sci 79:1986

    Article  CAS  Google Scholar 

  45. Ahlblad G, Reitberger T, Terselius B, Sternberg B (1999) Polym Degrad Stab 65:169

    Article  CAS  Google Scholar 

  46. Zaharescu T, Postolache C, Giurginca M (1996) J Appl Polym Sci 59:969

    Article  CAS  Google Scholar 

  47. Zaharescu T, Giurginca M, Jipa S (2009) Polym Degrad Stab 63:245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T., Scagliusi, S.R., Luchian, A.M. et al. Degradability Characterization of EPDM/IIR Blends by γ-irradiation. J Polym Environ 26, 616–625 (2018). https://doi.org/10.1007/s10924-017-0966-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0966-9

Keywords

Navigation