Journal of Polymers and the Environment

, Volume 26, Issue 2, pp 616–625 | Cite as

Degradability Characterization of EPDM/IIR Blends by γ-irradiation

  • Traian Zaharescu
  • Sandra R. Scagliusi
  • Ana Maria Luchian
  • Ademar B. Lugão
Original Paper


In this paper the modifications induced in butyl rubbers (pristine, chlorinated and brominated sorts) by γ-irradiation are investigated by swelling, chemiluminescence and FT-IR. The susceptibility of butyl rubbers for the generation of radicals orders their stabilities in the following sequence: IIR > IIR—Cl > IIR—Br. The incorporation of butyl rubbers into ethylene-propylene terpolymer matrix brings about increased densities of radicals initiating modifications in the oxidation state in respect with recombination, which are intensified as the processing dose increases. Based on the variation of carbonyl and hydroxyl indices the favorable route for the recycling EPDM based formulations would be suggested in this study. The chemiluminescence spectra proving the formation of peroxyl radicals at about 100 °C prove their availability as reclaiming solutions. IIR—Br is the recommendable butyl rubber for the recovery procedure by association with EPDM. The suitability of IIRs for recycling purposes is analyzed by the variation in their crosslink densities, free volumes and swelling degrees. The crosslinking behavior of stabilized EPDM/IIR blends that runs to the improvement of durability is depicted by Charlesby–Pinner representation, which involves the different simultaneous contribution of scission and crosslinking processes.


EPDM Halogenated IIR Degradation Oxidation Recycling γ-Irradiation 


  1. 1.
    Burillo G, Clough RL, Czvikovszky T, Guven O, Le Moel A, Liu WW, Singh A, Yang JT, Zaharescu T (2002) Radiat Phys Chem 64:41CrossRefGoogle Scholar
  2. 2.
    Sinha V, Patel MR, Patel JV (2010) J Polym Environ 18:8CrossRefGoogle Scholar
  3. 3.
    Khan WS, Asmatulu R, Davuluri S, Dandin VK (2014) J Mater Sci Technol 30:854CrossRefGoogle Scholar
  4. 4.
    Enomoto I, Katsumura Y, Kube H, Sekiguchi M (2010) Radiat Phys Chem 7:718CrossRefGoogle Scholar
  5. 5.
    Johnson J (2014) Post-consumer plastic recycling rates continue strong growth. Plastics News ReportGoogle Scholar
  6. 6.
    Marsh K, Bugusu B (2007) Food J Food Sci 72:R39CrossRefGoogle Scholar
  7. 7.
    EEA—European Environment Agency Report (2016) Most recent data: Further Eurostat Information. Main tables and databaseGoogle Scholar
  8. 8.
    Pritchard G (1999) Reinforced plastics durability, ch. 2. CRC, Boca RatonCrossRefGoogle Scholar
  9. 9.
    IAEA—International Atomic Energy Agency (2004) Advances in radiation chemistry of polymers. TECDOC 1420Google Scholar
  10. 10.
    IAEA—International Atomic Energy Agency (2009) Controlling of degradation effects in radiation processing of polymers. TECDOC 1617Google Scholar
  11. 11.
    Zaharescu T, Jipa S, Setnescu R, Setnescu T (2000) J Appl Polym Sci 77:982CrossRefGoogle Scholar
  12. 12.
    A. G. Chmielewski, M. Haji-Saeid and Ahmed S (2005) Nucl. Instrum. Meth. Phys. Res. B236 44Google Scholar
  13. 13.
    Martínez-López M, Martínez-Barrera G, Barrera-Díaz CE, Ureña-Nuñez F, Loredo dos Reis JM (2016) Constr Build Mater 121:1CrossRefGoogle Scholar
  14. 14.
    Wang BL, Xu ZY, Zeng XM, Ma SM, Zang YX, Sun DM (1993) Radiat Phys Chem 42:215CrossRefGoogle Scholar
  15. 15.
    Barttacharya A (2000) Prog Polym Sci 25:371CrossRefGoogle Scholar
  16. 16.
    Teinov AV, Zavyalov NV, Khokhlov YA, Sitnikov NP, Smetanin ML, Tarantasov VP, Shadrin DN, Shorikov IV, Liakumovici A. L., F. K. Miryasova (2002) Radiat Phys Chem 63:245CrossRefGoogle Scholar
  17. 17.
    Karaağaç B, Şen M, Deniz V, Güven O (2007) Nucl Instrum Meth Phys Res B265:290CrossRefGoogle Scholar
  18. 18.
    Smith M, Berlioz S, Chailan JF (2013) Polym Degrad Stab 98:682CrossRefGoogle Scholar
  19. 19.
    Botros SH (1998) Polym Degrad Stab 62:471CrossRefGoogle Scholar
  20. 20.
    Singh RP, Chandra R (1982) Polym Photochem 2:257CrossRefGoogle Scholar
  21. 21.
    Davenas J, Stevenson I, Celette N, Vigier N, David L (2003) Nucl Instrum Meth Phys Res B208:461CrossRefGoogle Scholar
  22. 22.
    Abou Zeid MM, Rabie ST, Nada AA, Khalil AM, Hilal RH (2008) Nucl Instrum Meth Phys Res B266&:p 111t;/bib>Google Scholar
  23. 23.
    Özdemir T (2008) Radiat Phys Chem 77:787CrossRefGoogle Scholar
  24. 24.
    Hacioğlu F, Özdemir T, Çavdar S, Usanmaz A (2013) Radiat Phys Chem 83:122CrossRefGoogle Scholar
  25. 25.
    Zaharescu T, Jipa S, Giurginca M, Podină C (1998) Polym Degrad Stab 62:569CrossRefGoogle Scholar
  26. 26.
    Chipară MD, Grecu VV, Chipară MI, C. Ponta, J. Reyes Romero (1999) Nucl Instrum Meth Phys Res B151:444CrossRefGoogle Scholar
  27. 27.
    El-Sabbagh SH (2003) J Appl Polym Sci 90:1CrossRefGoogle Scholar
  28. 28.
    Tostar S, Stenvall E, M. R. S. J. Foreman, Boldizar A (2016) Recycling 1&:p 101t;/bib>Google Scholar
  29. 29.
    M. H. Haji-Saeid, M. E. Sampa, N. Ramamoorty, A. Chmielewski, O. Güven (2007) Nucl Instrum Meth Phys Res B265&:p 51t;/bib>Google Scholar
  30. 30.
    Zaharescu T, Cazac C, Jipa S, Setnescu R (2001) Nucl Instrum Meth Phys Res 185&:p 360t;/bib>Google Scholar
  31. 31.
    Manaila E, Stelescu D, Craciun G (2012) In: Boczkowska A (ed) Polymer series—advanced elastomers. Technology, properties and applications, ch. 1. INTECH, RijekaGoogle Scholar
  32. 32.
    Zaharescu T, L. I. P. Kayan, Lungulescu ME, Parra DF, Lugão AB (2016) Iranian Polym J 25:725CrossRefGoogle Scholar
  33. 33.
    Allen NS, Hoang E, Liauw CM, Edge M, Fontan E (2001) Polym Degrad Stab 72&:p 367t;/bib>Google Scholar
  34. 34.
    Carlsson DJ, Čhmela S, Weiss DM (1989) Makromol Chem Macromol Symp 27&:p 139t;/bib>Google Scholar
  35. 35.
    Barton AFM (1991) In: Handbook of solubility parameters and other cohesion parameters, 2nd edition. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Luo Y-R (2007) Comprehensive handbook of chemical bond energies. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  37. 37.
    Makuuchi K, Cheng S (2012) Radiation processing of polymer materials and its industrial applications. (Wiley, New YorkCrossRefGoogle Scholar
  38. 38.
    Wood RJ, Pikaev AK (1993) Applied Radiation Chemistry. Wiley, New YorkGoogle Scholar
  39. 39.
    Zaharescu T, Jipa S, Giurginca M (1998) J Macromol Sci Pure Appl Chem A35:1093CrossRefGoogle Scholar
  40. 40.
    Šećerov B, Marino-Cincović M, Popović S, Nedić Z, Kačarević-Popović Z (2008) Polym Bull 60:313CrossRefGoogle Scholar
  41. 41.
    Mateescu G (1982) In: FTIR Spectroscopy. Romanian Academy Printing House, Bucharest, p.<background-color:#96C864;> </background-color:#96C864;>235Google Scholar
  42. 42.
    Rivaton A, Cambon S, J–L. Gardette (2006) Polym Degrad Stab 91:136CrossRefGoogle Scholar
  43. 43.
    Zaharescu T, Zen HA, Marinescu M, Scagliusi SR, E. C. L. Cardoso, Lugão AB, Chem (2016) Papers 70&:p 459t;/bib>Google Scholar
  44. 44.
    Fearon PK, Whiteman DJ, Billingham NC, Bigger SW (2001) J Appl Polym Sci 79:1986CrossRefGoogle Scholar
  45. 45.
    Ahlblad G, Reitberger T, Terselius B, Sternberg B (1999) Polym Degrad Stab 65:169CrossRefGoogle Scholar
  46. 46.
    Zaharescu T, Postolache C, Giurginca M (1996) J Appl Polym Sci 59:969CrossRefGoogle Scholar
  47. 47.
    Zaharescu T, Giurginca M, Jipa S (2009) Polym Degrad Stab 63:245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Traian Zaharescu
    • 1
  • Sandra R. Scagliusi
    • 2
  • Ana Maria Luchian
    • 1
  • Ademar B. Lugão
    • 2
  1. 1.Radiochemistry CenterNational Institute for Electrical Engineering (INCDIE, ICPE-CA)BucharestRomania
  2. 2.Instituto de Pesquisas Energéticas e Nucleares (IPEN – CNEN/SP)São PauloBrazil

Personalised recommendations