Skip to main content
Log in

EPDM recycling assisted by γ-processing

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

An Erratum to this article was published on 23 December 2016

Abstract

The integration of waste ethylene–propylene–diene terpolymer (EPDM), containing carbon black into pristine EPDM can be achieved by γ-irradiation as a versatile procedure to process ethylene–propylene elastomers. The presence of acrylic acid in the material formulation allows the formation of intermolecular bridges by threefold increase in gel content. The possibility of achieving greater stability by the addition of acrylic acid in EPDM systems was analyzed. The start materials were EPDM containing 30 and 50 phr of EPDM powder loaded with 40 phr of carbon black aged by pre-exposure to electron beam irradiation. The advanced γ-irradiation exceeding 100 kGy represented the optimal radiation processing condition. Two procedures of chemiluminescence under isothermal and non-isothermal regimes for the evaluation of radiation stability were applied on γ-irradiated samples. The thermal strength of irradiated samples was characterized based on the radiolysis mechanism of EPDM. The variation in the activation energy required for the thermal oxidation of these samples and the modification in gel contents due to the gelation action of acrylic acid were presented for the validation of proposed recycling radiochemical technique. Charlesby–Pinner representation provided different values for the ratios between radiochemical yields of cross-linking and scission, proving that the presence of acrylic acid promoted the conversion of EPDM wastes into valuable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. La Mantia FP, Scaffaro R (2014) In: Utraki LA, Wilkie K (eds) Polymer blends handbook, 2nd edn. Springer, Dordrecht

    Google Scholar 

  2. Robeson L (2014) Historical perspective of advances in the science and technology of polymer blends. Polymers 6:1251–1265

    Article  Google Scholar 

  3. Wang D, Li Y, Xie XM, Guo BH (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200

    Article  CAS  Google Scholar 

  4. Darie RN, Brebu M, Vasile C, Kozlowski M (2003) On the compatibility of the iPP/PA6/EPDM blends with and without functionalized iPP, I: thermo-oxidative behavior. Polym Degrad Stab 80:551–566

    Article  CAS  Google Scholar 

  5. Mehrabi Mazadi M, Razavi Aghjeh MK (2015) Effects of blend composition and compatibilization on the melt rheology and phase morphology by binary and ternary PP/PA6/EPDM blends. Polym Bull 72:1975–2000

    Article  Google Scholar 

  6. Zaharescu T, Jipa S (2013) In: Arndt KF, Lechner MD (eds) Landolt-Börnstein- group VIII Advanced Materials and Technologies, Vol VIII/6A1. Springer, Heidelberg

    Google Scholar 

  7. Mistretta MC, Fortana P, Ceraulo M, Morreale M, La Mantia FP (2015) Effect of compatibilization on the photo-oxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites. Polym Degrad Stab 112:192–197

    Article  CAS  Google Scholar 

  8. Rivaton A, Cambon S, Gardette JL (2006) Radiochemical ageing of ethylene-propylene—diene elastomers. Evaluation of some antioxidants. Polym Degrad Stab 91:136–143

    Article  CAS  Google Scholar 

  9. Ito M (2007) Degradation of elastomer by heat and/or radiation. Nuclear Instrum Methods Phys Res B 265:227–231

    Article  CAS  Google Scholar 

  10. Zaharescu T, Giurginca M, Jipa S (1999) Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants. Polym Degrad Stab 63:245–251

    Article  CAS  Google Scholar 

  11. Özdemir T (2008) Gamma irradiation degradation/modification of 5-ethylidene 2-norbornene (ENB)—based ethylene–propylene–diene terpolymer (EPDM) depending on EBN content of EPDM and type/content of peroxides used in vulcanization. Radiat Phys Chem 77:787–793

    Article  Google Scholar 

  12. Devenas J, Stevenson I, Celette N, Cambon S, Gardette JL (2002) Stability of polymers under ionizing radiation: the many faces of radiation interactions with polymers. Nucl Instrum Methods Phys Res B 191:653–661

    Article  Google Scholar 

  13. Fuzail M, Hill DJT, Le TT (2006) An ESR study of the radiolysis of semi-crystalline ethylene-propylene copolymers containing DOP mobilizer. J Appl Polym Sci 99:638–643

    Article  CAS  Google Scholar 

  14. Fuzail M, Hill DJT, Park Y, Halley P (2006) A rheology study of high energy radiolysis of a semi-crystalline ethylene-propylene copolymers containing DOP mobilizer. J Appl Polym Sci 101:3437–3441

    Article  CAS  Google Scholar 

  15. Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Cowman R, Higginbo CL (2013) Characterization of the surface and structural properties of gamma ray and electron beam irradiated low density polyethylene. Int J Mater Sci 3:1–8

    Google Scholar 

  16. Kornacka EM, Przybytniak G, Święszkowski W (2013) The influence of crystallinity on radiation stability of UHMWPE. Radiat Phys Chem 84:151–156

    Article  CAS  Google Scholar 

  17. Gamlin CL, Dutta NK, Choudhury NR (2003) Mechanism and kinetics of the isothermal thermodegradation of ethylene–propylene–diene (EPDM) elastomers. Polym Degrad Stab 80:525–531

    Article  CAS  Google Scholar 

  18. Alam TM, Celina M, Assink RA, Clough RL, Gillen KT (2001) 17O NMR investigation of oxidative degradation in polymers under γ-irradiation. Radiat Phys Chem 60:121–127

    Article  CAS  Google Scholar 

  19. Carlsson DJ, Wiles MD (1969) The photodegradation of polypropylene films. II. Photolysis of ketone oxidation products. Macromolecules 2:587–597

    Article  CAS  Google Scholar 

  20. Bernstein R, Thomberg SM, Assink RA, Mowery DM, Alam K, Irwin AN, Derzen DK, Klamo SB, Clough RL (2007) Insight into oxidation mechanisms in gamma-irradiated polypropylene, utilizing selective isotopic labeling with analysis by GC/MS, NMR and FTIR. Nucl Instrum Methods Phys Res B 265:8–17

    Article  CAS  Google Scholar 

  21. Heinen W, Ballijns LN, Wittenburg WJA, Winters R, Lugtenburg J, van Duin M (1999) Synthesis and characterization of carbon-13 labelled 2-ethylidene-5-norbornene containing EPDM rubber. Observation of cross-linking and oxidation. Polymer 40:4353–4363

    CAS  Google Scholar 

  22. Nabil H, Ismail H, Azura AR (2014) Properties of natural rubber/recycled ethylene–propylene–diene rubber blends using various vulcanizing systems. Iran Polym J 23:37–45

    Article  CAS  Google Scholar 

  23. Chinellato AC, Vidotti SE, Hu GH, Pessan LA (2010) Compatibilizing effect of acrylic acid modified polypropylene on the morphology and permeability properties of polypropylene/organoclay nanocoposites. Compos Sci Technol 70:458–465

    Article  CAS  Google Scholar 

  24. Burillo G, Galicia M, del Pilar Carreón M, Vásquez M, Adem E (2001) Cross-linking of recycled polyethylene by gamma irradiation in the presence of sensitizers. Radiat Phys Chem 60:73–78

    Article  CAS  Google Scholar 

  25. Lacoste L, Ladsous P, Dieppedale M, Arnaud R (1998) Quantitative study of photocatalyzed oxidation of ethylene-propylene rubber and atactic polypropylene. J Appl Polym Sci 69:1681–1689

    Article  CAS  Google Scholar 

  26. Zaharescu T, Ilies DC, Rosu T (2016) Thermal and spectroscopic analysis of stabilization effect of copper complexes in EPDM. J Therm Anal Calorim 123:231–239

    Article  CAS  Google Scholar 

  27. Stelescu MD, Manaila E, Craciun G (2013) Vulcanization of ethylene-propylene-terpolymer-based rubber mixtures by radiation processing. J Appl Polym Sci 128:2325–2336

    Article  CAS  Google Scholar 

  28. Zaharescu T, Jipa S, Setnescu R, Setnescu T (2000) Radiation processing of polyolefin blends, part I: cross-linking of EPDM/PP blends. J Appl Polym Sci 77:982–987

    Article  CAS  Google Scholar 

  29. Jacob C, De PP, Bhowmick AK, De SK (2001) Recycling of EPDM wastes, II: replacement of virgin rubber by ground EPDM vulcanizate in EPDM/PP thermoplastic elastomeric composition. J Appl Polym Sci 82:3304–3312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s13726-016-0494-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T., Kayan, L.I.P., Lungulescu, M.E. et al. EPDM recycling assisted by γ-processing. Iran Polym J 25, 725–730 (2016). https://doi.org/10.1007/s13726-016-0460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0460-6

Keywords

Navigation