Skip to main content
Log in

Antibacterial and Drug Elution Performance of Thermoplastic Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Food preservatives or drug compounds can be eluted from polymer substrates to prevent the occurrence of hospital-acquired infections and food spoilage. We investigated the antimicrobial and drug-elution properties of the albumin and zein thermoplastic blends plasticized with glycerol and mixed with varying amounts of low-density polyethylene (LDPE), food preservatives (sodium benzoate or sodium nitrite), and drugs (ampicillin or ciprofloxacin). Bacillus subtilis and Escherichia coli were utilized as Gram (+) and Gram (−) species, respectively, for antimicrobial and drug-elution analyses, since these species are common in the human body and in food environments. The amount of contamination occurring in food and medical applications could be limited with usage of plastic blends made from thermomechanical molding of proteins (albumin from hen egg white and zein from corn), drug eluting compounds, and low-density polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hota B (2004) Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection?. Clin Infect Dis 39(8):1182–1189

    Article  Google Scholar 

  2. Schultz M, Gill J, Zubairi S, Huber R, Gordin F (2003) Bacterial contamination of computer keyboards in a teaching hospital. Infect Control Hosp Epidemiol 24(4):302–303

    Article  Google Scholar 

  3. Borch E, Kant-Muermans M-L, Blixt Y (1996) Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33(1):103–120

    Article  CAS  Google Scholar 

  4. Halden RU (2010) Plastics and Health Risks. Annual Reviews of Public Health 31:179–194

    Article  Google Scholar 

  5. Lau O-W, Wong S-K (1994) Naphthalene contamination of sterilized milk drinks contained in low-density polyethylene bottles: part 1. Analyst 119(5):1037–1042

    Article  CAS  Google Scholar 

  6. Queiroz AC, Santos JD, Monteiro FJ, Gibson IR, Knowles JC (2001) Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials 22(11):1393–1400

    Article  CAS  Google Scholar 

  7. Dimalo F, O’Halloran JJ, Quale JM (1994) In vitro elution of ciprofloxacin from polymethylmethacrylate cement beads. J Orthop Res 12(1):79–82

    Article  Google Scholar 

  8. Vartiainen J, Skytta E, Enqvist J, Ahvenainen R (2003) Properties of antimicrobial plastics containing traditional food preservatives. Packag Technol Sci 16(6):223–229

    Article  CAS  Google Scholar 

  9. Neetoo H, Ye M, Chen H, Joerger RD, Hicks DT, Hoover DG (2008) Use of nisin-coated plastic films to control listeria monocytogenes on vacuum-packaged cold-smoked salmon. Int J Food Microbiol 122(1–2):8–15

    Article  CAS  Google Scholar 

  10. Eby DM, Luckarift HR, Johnson, GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces, 1(7):1553–1560

    Article  CAS  Google Scholar 

  11. MacCallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin JJ, Vena A, Hatton B, Wong T-S, Aizenberg J (2015) Liquid-infused silicone as a biofouling-free medical material. ACS Biomaterials Sci Eng 1(1):43–51

    Article  CAS  Google Scholar 

  12. Loo C-Y, Young PM, Lee W-H, Cavaliere R, Whitchurch CB, Rohanizadeh R (2012)Superhydrophobic, nanotextured polyvinyl chloride films for delaying pseudomonas aeruginosa attachment to intubation tubes and medical plastics. Acta Biomaterialia 8(5):1881–1890

    Article  CAS  Google Scholar 

  13. Freschauf LR, McLane J, Sharma H, Khine M (2012) Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics. PLoS ONE 7(8):1–7

    Article  Google Scholar 

  14. Jones A, Zeller MA, Sharma S (2013) Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol. Progress in Biomaterials 2(12):1–13

    Google Scholar 

  15. Gillgren T, Stading M (2008) Mechanical and barrier properties of avenin, kafirin, and zein films. Food Biophysics 3(3):287–294

    Article  Google Scholar 

  16. Jones A, Mandal A, Sharma S (2015) Protein-based bioplastics and their antibacterial potential. J Appl Polymer Sci 132(18):​41931

  17. Güçbilmez ÇM, Yemenicioglu A, Arslanoglu A (2007) Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA. Food Res Int 40:80–91

    Article  Google Scholar 

  18. Jain D, Banerjee R (2008) Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater 86B(1):105–112

    Article  CAS  Google Scholar 

  19. Jones A, Sharma S (2016) Surface and degradation properties of thermoplastic blends from albumin and zein-based plastics. J Appl Polymer Sci

  20. Jones A, Sharma S (2016) Thermoplastic Blends from Albumin and Zein: plastic formation and mechanical properties including modeling. J Polymers Environ 24(4):309–317

    Article  CAS  Google Scholar 

  21. Sue HJ, Wang S, Lane JL (1997) Morphology and mechanical behaviour of engineering soy plastics. Polymer 38(20):5035–5040

    Article  CAS  Google Scholar 

  22. Institute, C. a. L S., (2012)Performance standards for antimicrobial disk susceptibility tests; approved standard, vol. M02–A11, 11th edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  23. Cazedey ECL, Salgado, HRN (2012) Spectrophotometric determination of ciprofloxacin hydrochloride in ophthalmic solution. Adv Anal Chem 2(6):74–79

  24. Torres-Giner S, Ocio MJ, Lagaron JM (2009) Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydr Polym 77(2):261–266

    Article  CAS  Google Scholar 

  25. Cutter CN, Willett JL, Siragusa GR (2001) Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett Appl Microbiol 33(4):325–328

    Article  CAS  Google Scholar 

  26. Zivanovic S, Li J, Davidson PM, Kit K (2007) Physical mechanical, and antibacterial properties of chitosan/PEO blend films. ACS Biomacromolecules 8(5):1505–1510

    Article  CAS  Google Scholar 

  27. Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A (2006) Edible antimicrobial films based on chitosan matrix. J Food Sci 67(3):1162–1169

    Article  Google Scholar 

  28. Fang C-S, Post LS, Solberg M (1985) Antimicrobial effect and disappearance of sodium nitrite in Staphylococcus aureus cultures. J Food Sci 50(5):1412–1416

    Article  CAS  Google Scholar 

  29. WHO (2000) Concise international chemical assessment document No. 26: benzoic acid and sodium benzoate. world health organization—International Programme on Chemical Safety, Geneva

    Google Scholar 

  30. Krebs HA, Wiggins D, Stubbs M (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214(3):657–663

    Article  CAS  Google Scholar 

  31. Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha Y, Jung C, El-Newehy M, Kim HK (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polymers 90(4):1786–1793

    Article  CAS  Google Scholar 

  32. Reinthaler FF, Posch J, Feierl G, Wüst G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic Resistance of E. coli in sewage and sludge. Water Res 37(8):1685–1690

    Article  CAS  Google Scholar 

  33. Reza S, Quadir MA, Haider SS (2003) Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J Pharm Pharm Sci 6(2):282–291

    CAS  Google Scholar 

  34. Gennadios A, Weller CL, Hanna MA, Froning GW (1996) Mechanical and barrier properties of egg albumen films. J Food Sci 61(3):585–589

    Article  CAS  Google Scholar 

  35. El-Shenawy MA, Marth EH (1988) Sodium benzoate inhibits growth of or inactivates listeria monocytogenes. J Food Protect 51(7):525–530

    Article  CAS  Google Scholar 

  36. Liu H, Leonas KK, Zhao Y (2010) Antimicrobial properties and release profile of ampicillin from electrospun poly(ε-caprolactone) nanofiber yarns. J Eng Fibers Fabr 5(4):10–19

    CAS  Google Scholar 

  37. Anguita-Alonso P, Rouse MS, Piper KE, Jacofsky DJ, Osmon DR, Patel R (2006) Comparative study of antimicrobial release kinetics from polymethylmethacrylate. Clin Orthop Relat Res 445:239–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A., Mandal, A. & Sharma, S. Antibacterial and Drug Elution Performance of Thermoplastic Blends. J Polym Environ 26, 132–144 (2018). https://doi.org/10.1007/s10924-016-0924-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0924-y

Keywords

Navigation