Skip to main content
Log in

Thermoplastic Blends from Albumin and Zein: Plastic Formation and Mechanical Properties Including Modeling

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of proteins in blending with traditional polymers in the formation of thermoplastics can produce plastics with properties that are superior to traditional petroleum-based plastics. We investigated the physical and thermal properties of albumin and zein thermoplastic blends plasticized with glycerol and mixed with varying amounts of low-density polyethylene (LDPE). Several mechanical models were utilized to determine how tensile properties will be altered when varying amounts of protein/LDPE were added into the thermoplastic blend. When analyzed for thermal properties, we found that as the amount of LDPE in the thermoplastic blend increased, the resulting plastic possessed thermal properties that were more similar to pure LDPE plastics. In terms of mechanical properties, comparison between the experimental data and model predictions points to a synergistic effect between albumin and LDPE that leads to higher modulus, while a potential lack of compatibility between zein and LDPE leads to a plastic with lower modulus. Based on our results, the use of albumin and zein proteins when blended with LDPE in the production of thermoplastics has potential use in the areas of medical and food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schultz M, Gill J, Zubairi S, Huber R, Gordin F (2003) Bacterial contamination of computer keyboards in a teaching hospital. Infect Control Hosp Epidemiol 24(4):302–303

    Article  Google Scholar 

  2. Borch E, Kant-Muermans M-L, Blixt Y (1996) Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33(1):103–120

    Article  CAS  Google Scholar 

  3. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Article  Google Scholar 

  4. Lee B-K, Ellenbecker MJ, Moure-Eraso R (2002) Analyses of the recycling potential of medical plastic wastes. Waste Manag 22(5):461–470

    Article  CAS  Google Scholar 

  5. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans Biol Sci 364(1526):2115–2126

    Article  CAS  Google Scholar 

  6. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1(43):13379–13398

    Article  CAS  Google Scholar 

  7. Guerrero P, Hanani N, Kerry JP, de la Caba K (2011) Characterization of soy protein-based films prepared with acids and alcohol. J Food Eng 107(1):41–49

    Article  CAS  Google Scholar 

  8. Patni N, Yadava P, Agarwal A, Maroo V (2014) An overview on the role of wheat gluten as a viable substitute for biodegradable plastics. Rev Chem Eng 30(4):421–430

    Article  CAS  Google Scholar 

  9. Jerez A, Partal P, Martínez I, Gallegos C, Guerrero A (2007) Protein-based bioplastics: effect of thermo-mechanical processing. Rheol Acta 46:711–720

    Article  CAS  Google Scholar 

  10. Dorigato A, Pegoretti A (2012) Biodegradable single-polymer composites from polyvinyl alcohol. Colloid Polym Sci 290(4):359–370

    Article  CAS  Google Scholar 

  11. Jones A, Zeller MA, Sharma S (2013) Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol. Prog Biomat 2(12):1–13

    Google Scholar 

  12. Gillgren T, Stading M (2008) Mechanical and barrier properties of avenin, kafirin, and zein films. Food Biophys 3(3):287–294

    Article  Google Scholar 

  13. Jones A, Mandal A, Sharma S (2015) Protein-based bioplastics and their antibacterial potential. J Appl Polym Sci 132:41931

    Article  Google Scholar 

  14. Taylor J, Anyango JO, Taylor JRN (2013) Developments in the science of zein, kafirin, and gluten protein bioplastic materials. Cereal Chem 90(4):344–357

    Article  CAS  Google Scholar 

  15. Shi W, Dumont M-J (2014) Review: bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. J Mater Sci 49(5):1915–1930

    Article  CAS  Google Scholar 

  16. Sue HJ, Wang S, Lane JL (1997) Morphology and mechanical behaviour of engineering soy plastics. Polymer 38(20):5035–5040

    Article  CAS  Google Scholar 

  17. Menard K (1999) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton

    Book  Google Scholar 

  18. Fried J (2003) Polymer science and technology, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  19. Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc Lond Sect B 69(8):808

    Article  Google Scholar 

  20. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837

    Article  CAS  Google Scholar 

  21. Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yanes by downsizing an ancient technology. Science 306:1358–1361

    Article  CAS  Google Scholar 

  22. Marsilla KIK, Verbeek CJR (2013) Properties of bloodmeal/linear low-density polyethylene blends compatibilized with maleic anhydride grafted polyethylene. J Appl Polym Sci 130(3):1890–1897

    Article  CAS  Google Scholar 

  23. Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys Space Phys 14(4):541–563

    Article  CAS  Google Scholar 

  24. Sperling LH (1997) Polymeric multicomponent materials: an introduction. Wiley, New Jersey

    Google Scholar 

  25. Davies WEA (1971) The thoery of elastic composite materials. J Phys D Appl Phys 4:1325–1339

    Article  Google Scholar 

  26. Neilson LE, Landel RF (1974) Mechanical properties of polymers and composites. Marcel Dekker Inc., New York

    Google Scholar 

  27. Castelló M, Dweck J, Aranda DAG (2009) Thermal stability and water content determination of glycerol by thermogravimetry. J Therm Anal Calorim 97(2):627–630

    Article  Google Scholar 

  28. Magoshi J, Nakamura S, Murakami K-I (1992) Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. J Appl Polym Sci 45(11):2043–2048

    Article  CAS  Google Scholar 

  29. Wongsasulak S, Kit KM, McClements DJ, Yoovidhya T, Weiss J (2007) The effect of solution properties on the morphology of ultrafine electrospun egg albumen–PEO composite fibers. Polymer 48(2):448–457

    Article  CAS  Google Scholar 

  30. Park JW, Oh SC, Lee HP, Kim HT, Yoo KO (2000) A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab 67(3):535–540

    Article  CAS  Google Scholar 

  31. Kim JM, Whang JH, Kim KM, Koh JH, Suh HJ (2004) Preparation of corn gluten hydrolysate with angiotensin I converting enzyme inhibitory activity and its solubility and moisture sorption. Process Biochem 39(8):989–994

    Article  CAS  Google Scholar 

  32. Herald TJ, Smith DM (1992) Heat-induced changes in the secondary structure of hen egg S-ovalbumin. J Agric Food Chem 40(10):1737–1740

    Article  CAS  Google Scholar 

  33. Liu C, Wang J, He J (2002) Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer 43(13):3811–3818

    Article  CAS  Google Scholar 

  34. Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A (2007) Egg white-based bioplastics developed by thermomechanical processing. J Food Eng 82(4):608–617

    Article  CAS  Google Scholar 

  35. Shieh Y-T, Chuang H-C (2001) DSC and DMA studies on silane-grafted and water-crosslinked LDPE/LLDPE blends. J Appl Polym Sci 81(7):1808–1816

    Article  CAS  Google Scholar 

  36. Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41(11):4157–4167

    Article  CAS  Google Scholar 

  37. Corradini E, Mattoso LHC, Guedes CGF, Rosa DS (2004) Mechanical, thermal and morphological propertiesof poly(e-caprolactone)/zein blends. Polym Adv Technol 15(6):340–345

    Article  CAS  Google Scholar 

  38. Verbeek CJR, van den Berg LE (2010) Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng 295:10–21

    Article  CAS  Google Scholar 

  39. Vaz CM, Mano JF, Fossen M, van Tuil RF, de Graaf LA, Reis RL, Cunha AM (2002) Mechanical, dynamic-mechanical, and thermal properties of soy protein-based thermoplastics with potential biomedical applications. J Macromol Sci Part B Phys 41(1):33–46

    Article  Google Scholar 

  40. Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A (2003) Thermoplastic starch/natural rubber blends. Carbohydr Polym 53(1):95–99

    Article  CAS  Google Scholar 

  41. Tian H, Wang Y, Zhang L, Quan C, Zhang X (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crops Prod 32(1):13–20

    Article  CAS  Google Scholar 

  42. Leclair A, Favis BD (1996) The role of interfacial contact in immiscible binary polymer blends and its influence on mechanical properties. Polymer 37(21):4723–4728

    Article  CAS  Google Scholar 

  43. Herald TJ, Obuz E, Twombly WW, Rausch KD (2002) Tensile properties of extruded corn protein low-density polyethylene films. Cereal Chem 79(2):261–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A., Sharma, S. Thermoplastic Blends from Albumin and Zein: Plastic Formation and Mechanical Properties Including Modeling. J Polym Environ 24, 309–317 (2016). https://doi.org/10.1007/s10924-016-0774-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0774-7

Keywords

Navigation