Skip to main content
Log in

Antibacterial Activity of Bacillus Lipopeptides Vehiculized and Delivered by Biopolymeric Films

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Active films based on different biopolymers (pectin, Brea gum, carboxymethylcellulose, and composite starch-gelatin) were prepared by casting. Lipopeptides synthesized by bacteria of the Bacillus genus were added as antimicrobial active agent. Antibacterial activity was evaluated and quantified by direct contact technique against different strains of Listeria monocytogenes, Escherichia coli, and Salmonella enterica sp. Incorporation of lipopeptides did not cause significant changes in mechanical and barrier properties of films. Antibacterial effect of functionalized films depended on the nature of the polymeric matrix and the pathogen studied. Functionalized pectin films inhibited the growth of all strains studied, with non-functionalized pectin films also showing inhibition of L. monocytogenes. Functionalized starch-gelatin films only inhibited the growth of L. monocytogenes. The other matrices did not show adequate performance for this type of application. The results suggested that pectin and starch-gelatin composite can be used as effective lipopeptide carriers to produce antimicrobial active films for food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdollahzadeh, E., Nematollahi, A., & Hosseini, H. (2021). Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends in Food Science & Technology, 110, 291–303.

    Article  CAS  Google Scholar 

  • Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., & Cháfer, M. (2016). Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids, 61, 233–240.

    Article  CAS  Google Scholar 

  • Ali, A., Chen, Y., Liu, H., Yu, L., Baloch, Z., Khalid, S., ... & Chen, L. (2019). Starch-based antimicrobial films functionalized by pomegranate peel. International Journal of Biological Macromolecules, 129, 1120–1126.

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3(2), 113–126.

    Article  CAS  Google Scholar 

  • ARGENTINA. Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. Capítulo XVIII. Artículo 1398. Apartado 72.1 Goma brea. Código Alimentario Argentino, Buenos Aires, 2014. Available at: <https://www.anmat.gov.ar/alimentos/normativas_alimentos_caa.asp>. Accessed on: 07 nov. 2017.

  • Arismendi, C., Chillo, S., Conte, A., Del Nobile, M. A., Flores, S., & Gerschenson, L. N. (2013). Optimization of physical properties of xanthan gum/tapioca starch edible matrices containing potassium sorbate and evaluation of its antimicrobial effectiveness. LWT Food Science and Technology, 53(1), 290–296.

    Article  CAS  Google Scholar 

  • ASTM. (2010a). E96. Standard test methods for water vapour transmission of materials. Philadelphia: Standards American Society for Testing and Materials.

  • ASTM. (2010b). D882 Standard test methods for tensile properties of thin plastic sheeting. Standards American Society for Testing and Materials.

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6(9), 2419–2428.

    Article  CAS  Google Scholar 

  • Bastarrachea, L., Dhawan, S., & Sablani, S. S. (2011). Engineering properties of polymeric-based antimicrobial films for food packaging: A review. Food Engineering Reviews, 3(2), 79–93.

    Article  Google Scholar 

  • Ben Ayed, H., Hmidet, N., Béchet, M., Jacques, P., & Nasri, M. (2017). Identification and natural functions of cyclic lipopeptides from Bacillus amyloliquefaciens An6. Engineering in Life Sciences, 17(5), 536–544.

    Article  CAS  PubMed  Google Scholar 

  • Benito-Peña, E., González-Vallejo, V., Rico-Yuste, A., Barbosa-Pereira, L., Cruz, J. M., Bilbao, A., & Moreno-Bondi, M. C. (2016). Molecularly imprinted hydrogels as functional active packaging materials. Food Chemistry, 190, 487–494.

    Article  PubMed  Google Scholar 

  • Bertuzzi, M. A., Slavutsky, A. M., & Armada, M. (2012). Physicochemical characterisation of the hydrocolloid from Brea tree (Cercidium praecox). International Journal of Food Science and Technology, 47(4), 768–775.

    Article  Google Scholar 

  • Bie, X., Lu, Z., Lu, F., & Zeng, X. (2005). Screening the main factors affecting extraction of the antimicrobial substance from Bacillus sp. fmbJ using the Plackett–Burman method. World Journal of Microbiology and Biotechnology, 21(6), 925–928.

  • Bie, X. M., Lü, F. X., Lu, Z. X., Huang, X. Q., & Shen, J. (2006). Isolation and identification of lipopeptides produced by Bacillus subtilis fmbJ. Sheng wu gong cheng xue bao= Chinese journal of biotechnology, 22(4), 644–649.

  • Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110(1), 18–25.

    Article  CAS  Google Scholar 

  • Bof, M. J., Jiménez, A., Locaso, D. E., Garcia, M. A., & Chiralt, A. (2016). Grapefruit seed extract and lemon essential oil as active agents in corn starch–chitosan blend films. Food and Bioprocess Technology, 9(12), 2033–2045.

    Article  CAS  Google Scholar 

  • Carina, D., Sharma, S., Jaiswal, A. K., & Jaiswal, S. (2021). Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends in Food Science and Technology, 110, 559–572.

    Article  CAS  Google Scholar 

  • Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydrate Polymer Technologies and Applications, 2, 100024.

    Article  CAS  Google Scholar 

  • Chen, W. C., Juang, R. S., & Wei, Y. H. (2015). Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal, 103, 158–169.

    Article  CAS  Google Scholar 

  • Chiumarelli, M., & Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20–27.

    Article  CAS  Google Scholar 

  • Cochrane, S. A., & Vederas, J. C. (2016). Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Medicinal Research Reviews, 36(1), 4–31.

  • Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1–2), 90–103.

    Article  CAS  PubMed  Google Scholar 

  • de Araujo, L. V., Guimarães, C. R., da Silva Marquita, R. L., Santiago, V. M., de Souza, M. P., Nitschke, M., & Freire, D. M. G. (2016). Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control, 63, 171–178.

    Article  Google Scholar 

  • Díaz, P. R., Torres, M. J., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2022). Antibacterial activity of Bacillus licheniformis B6 against viability and biofilm formation of foodborne pathogens of health importance. World Journal of Microbiology and Biotechnology, 38(10), 181.

    Article  PubMed  Google Scholar 

  • Donnelly, C. W. (2001). Listeria monocytogenes: A continuing challenge. Nutrition Reviews, 59(6), 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT Food Science and Technology, 87, 54–60.

    Article  CAS  Google Scholar 

  • Edosa, T. T., Jo, Y. H., Keshavarz, M., Kim, I. S., & Han, Y. S. (2020). Biosurfactants induce antimicrobial peptide production through the activation of Tm Spatzles in Tenebrio molitor. International Journal of Molecular Sciences, 21(17), 6090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-a review. Food Hydrocolloids, 35, 287–296.

    Article  CAS  Google Scholar 

  • Galus, S., & Kadzińska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273–283.

    Article  CAS  Google Scholar 

  • Gamboni, J. E., Slavutsky, A. M., & Bertuzzi, M. F. (2019). Starch-pectin films obtained by extrusion and compression molding. Journal of Multidisciplinary Engineering Science and Technology, 6(6), 10175–10183.

    Google Scholar 

  • Guo, M., Jin, T. Z., & Yang, R. (2014). Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food and Bioprocess Technology, 7(11), 3293–3307.

    Article  CAS  Google Scholar 

  • Hanušová, K., Šťastná, M., Votavová, L., Klaudisová, K., Dobiáš, J., Voldřich, M., & Marek, M. (2010). Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: Nisin and natamycin migration, efficiency in cheese packaging. Journal of Food Engineering, 99(4), 491–496.

    Article  Google Scholar 

  • Ibarguren, C., Raya, R. R., Apella, M. C., & Audisio, M. C. (2010a). Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. The Journal of Microbiology, 48(1), 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Ibarguren, C., Vivas, L., Alejandra Bertuzzi, M., Apella, M. C., & Carina Audisio, M. (2010b). Edible films with anti-Listeria monocytogenes activity. International Journal of Food Science and Technology, 45(7), 1443–1449.

    Article  CAS  Google Scholar 

  • Ibarguren, C., Céliz, G., Díaz, A. S., Bertuzzi, M. A., Daz, M., & Audisio, M. C. (2015). Gelatine based films added with bacteriocins and a flavonoid ester active against food-borne pathogens. Innovative Food Science and Emerging Technologies, 28, 66–72.

    Article  CAS  Google Scholar 

  • Jemil, N., Ouerfelli, M., Almajano, M. P., Elloumi-Mseddi, J., Nasri, M., & Hmidet, N. (2020). The conservative effects of lipopeptides from Bacillus methylotrophicus DCS1 on sunflower oil-in-water emulsion and raw beef patties quality. Food Chemistry, 303, 125364.

    Article  CAS  PubMed  Google Scholar 

  • Jin, P., Wang, Y., Tan, Z., Liu, W. & Miao, W. (2020). Antibacterial activity and rice-induced resistance, mediated by C15surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae. Pesticide Biochemistry and Physiology, 169, 104669.

  • Joe, M. M., Bradeeba, K., Parthasarathi, R., Sivakumaar, P. K., Chauhan, P. S., Tipayno, S., & Sa, T. (2012). Development of surfactin based nanoemulsion formulation from selected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 172–180.

    Article  CAS  Google Scholar 

  • Khaneghah, A. M., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19.

    Article  Google Scholar 

  • Kourmentza, K., Gromada, X., Michael, N., Degraeve, C., Vanier, G., Ravallec, R., ... & Jauregi, P. (2021). Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Frontiers in Microbiology, 11, 561060.

  • La Storia, A., Di Giuseppe, F. A., Volpe, S., Oliviero, V., Villani, F., & Torrieri, E. (2020). Physical properties and antimicrobial activity of bioactive film based on whey protein and Lactobacillus curvatus 54M16 producer of bacteriocins. Food Hydrocolloids, 108, 105959.

    Article  Google Scholar 

  • Li, F. Z., Zeng, Y. J., Zong, M. H., Yang, J. G., & Lou, W. Y. (2020). Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: Production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. Journal of Biotechnology, 323, 42–53.

    Article  CAS  PubMed  Google Scholar 

  • Luciano, C. G., Rodrigues, M. M., Lourenço, R. V., Bittante, A. M. Q., Fernandes, A. M., & do Amaral Sobral, P. J. (2021). Bi-layer gelatin film: Activating film by incorporation of “pitanga” leaf hydroethanolic extract and/or nisin in the second layer. Food and Bioprocess Technology, 14(1), 106–119.

    Article  CAS  Google Scholar 

  • Meena, K. R., & Kanwar, S. S. (2015). Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Research International, 2015.

  • Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, O., Gil, À., Atarés, L., & Chiralt, A. (2017). Active starch-gelatin films for shelf-life extension of marinated salmon. LWT Food Science and Technology, 84, 189–195.

    Article  CAS  Google Scholar 

  • Moreno, O., Atarés, L., Chiralt, A., Cruz-Romero, M. C., & Kerry, J. (2018). Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. LWT Food Science and Technology, 97, 483–490.

    Article  CAS  Google Scholar 

  • Nerin, C., Aznar, M., & Carrizo, D. (2016). Food contamination during food process. Trends in Food Science and Technology, 48, 63–68.

    Article  CAS  Google Scholar 

  • Ollé Resa, C. P., Gerschenson, L. N., & Jagus, R. J. (2013). Effect of natamycin on physical properties of starch edible films and their effect on Saccharomyces cerevisiae activity. Food and Bioprocess Technology, 6(11), 3124–3133.

    Article  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M., Lorevice, M. V., Moura, M. R., Mattoso, L. H., & McHugh, T. H. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151–1169.

    Article  PubMed  Google Scholar 

  • Pan, Y., Farmahini-Farahani, M., O’Hearn, P., Xiao, H., & Ocampo, H. (2016). An overview of bio-based polymers for packaging materials. Journal of Bioresources and Bioproducts, 1(3), 106–113.

    Google Scholar 

  • Petkoska, A. T., Daniloski, D., D’Cunha, N. M., Naumovski, N., & Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981.

    Article  Google Scholar 

  • Pezo, D., Navascués, B., Salafranca, J., & Nerín, C. (2012). Analytical procedure for the determination of ethyl lauroyl arginate (LAE) to assess the kinetics and specific migration from a new antimicrobial active food packaging. Analytica Chimica Acta, 745, 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3), 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404–419.

    Article  PubMed  Google Scholar 

  • Sabaté, D. C., Carrillo, L., & Audisio, M. C. (2009). Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Research in Microbiology, 160, 193–199.

    Article  PubMed  Google Scholar 

  • Sabaté, D. C., & Audisio, M. C. (2013). Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiological Research, 168(3), 125–129.

  • Slavutsky, A. M., & Bertuzzi, M. A. (2012). A phenomenological and thermodynamic study of the water permeation process in corn starch/MMT films. Carbohydrate Polymers, 90(1), 551–557.

    Article  CAS  PubMed  Google Scholar 

  • Slavutsky, A. M., Bertuzzi, M. A., & Armada, M. (2012). Water barrier properties of starch-clay nanocomposite films. Brazilian Journal of Food Technology, 15, 208–218.

    Article  CAS  Google Scholar 

  • Seydlová, G., & Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Central European Journal of Medicine, 3(2), 123–133.

    Google Scholar 

  • Shiroodi, S. G., Nesaei, S., Ovissipour, M., Al-Qadiri, H. M., Rasco, B., & Sablani, S. (2016). Biodegradable polymeric films incorporated with nisin: Characterization and efficiency against Listeria monocytogenes. Food and Bioprocess Technology, 9(6), 958–969.

    Article  CAS  Google Scholar 

  • Sobral, P. J. D. A., & Habitante, A. M. Q. B. (2001). Phase transitions of pigskin gelatin. Food Hydrocolloids, 15(4–6), 377–382.

    Article  CAS  Google Scholar 

  • Son, S., Ko, S. K., Jang, M., Kim, J. W., Kim, G. S., Lee, J. K., ... & Ahn, J. S. (2016). New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006. Marine Drugs, 14(4), 72.

  • Stincone, P., Veras, F. F., Pereira, J. Q., Mayer, F. Q., Varela, A. P. M., & Brandelli, A. (2020). Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Microbiological Research, 238, 126515.

    Article  CAS  PubMed  Google Scholar 

  • Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., ... & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science and Technology, 33(2), 110–123.

  • Torres, M. J., Petroselli, G., Daz, M., Erra-Balsells, R., & Audisio, M. C. (2015). Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World Journal of Microbiology and Biotechnology, 31(6), 929–940.

  • Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2016). Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiological Research, 182, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M. J., Brandan, C. P., Sabaté, D. C., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological Control, 105, 93–99.

    Article  CAS  Google Scholar 

  • Umaraw, P., Munekata, P. E., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science and Technology, 98, 10–24.

    Article  CAS  Google Scholar 

  • Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., & Scamparini, A. R. P. (2007). Sucrose and inverted sugar as plasticizer. Effect on cassava starch–gelatin film mechanical properties, hydrophilicity and water activity. Food Chemistry, 103(2), 255–262.

  • von Müller, A. R., López, C. B., Eynard, A. R., & Guzmán, C. A. (2009). Subchronic toxicological evaluation of Brea gum (Parkinsonia preacox) as a food additive in BALB/c mice. Drug and Chemical Toxicology, 32(4), 307–311.

    Article  Google Scholar 

  • Wang, H., Liu, H., Chu, C., She, Y., Jiang, S., Zhai, L., ... & Li, X. (2015). Diffusion and antibacterial properties of nisin-loaded chitosan/poly (L-lactic acid) towards development of active food packaging film. Food and bioprocess technology, 8(8), 1657–1667.

  • WHO (World Health Organization). (2017). Food safety. Fact Sheet. http://www.who.int/mediacentre/factsheets/fs399/en/

  • Wyrwa, J., & Barska, A. (2017). Innovations in the food packaging market: Active packaging. European Food Research and Technology, 243(10), 1681–1692.

    Article  CAS  Google Scholar 

  • Yang, R., Lei, S., Xu, X., Jin, H., Sun, H., Zhao, X., ... & Shi, J. (2020). Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Applied Microbiology and Biotechnology, 104(19), 8077–8087.

  • Yavari Maroufi, L., Ghorbani, M., & Tabibiazar, M. (2020). A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13(9), 1633–1644.

    Article  CAS  Google Scholar 

  • Youssef, N., Simpson, D. R., Duncan, K. E., McInerney, M. J., Folmsbee, M., Fincher, T., & Knapp, R. M. (2007). In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Applied and Environmental Microbiology, 73(4), 1239–1247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of Applied Bacteriology Laboratory (INIQUI, CONICET, UNSa).

Funding

The financial support provided by the Consejo de Investigación de la Universidad Nacional de Salta (CIUNSa-Proyecto 2472) y MINCyT is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception and design of the study. Material preparation, data collection, and analysis were performed by Maria Veronica Colodro and Maria Julia Torres. The first draft of the manuscript was written by Maria Veronica Colodro, and all authors commented and contributed to subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Colodro M. Verónica.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verónica, C.M., Julia, T.M., M., S.A. et al. Antibacterial Activity of Bacillus Lipopeptides Vehiculized and Delivered by Biopolymeric Films. Food Bioprocess Technol 17, 504–515 (2024). https://doi.org/10.1007/s11947-023-03139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03139-5

Keywords

Navigation