Xu, Z., Thompson, H.A., Leach, R.K., Maskery, I., Tuck, C., Clare, A.T.: Staged thermomechanical testing of nickel superalloys produced by selective laser melting. Mater. Des. 133, 520–527 (2017)
Google Scholar
Rometsch, P.A., Pelliccia, D., Tomus, D., Wu, X.: Evaluation of polychromatic X-ray radiography defect detection limits in a sample fabricated from Hastelloy X by selective laser melting. NDT E Int. 62, 184–192 (2014)
Google Scholar
Khosravani, M.R., Reinicke, T.: 3D-printed sensors: current progress and future challenges. Sens. Actuators A. 305, 111916 (2020)
Google Scholar
Walker, J.M., Prokop, A., Lynagh, C., Vuksanovich, B., Conner, B., Rogers, K., Thiel, J., MacDonald, E.: Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. 27, 54–60 (2019)
Google Scholar
Biondani, F.G., Bissacco, G., Mohanty, S., Tang, P.T., Hansen, H.N.: Multi-metal additive manufacturing process chain for optical quality mold generation. J. Mater. Process. Technol. 227, 116451 (2020)
Google Scholar
Bissacco, G., Hansen, H.N., De Chiffre, L.: Micromilling of hardened tool steel for mould making applications. J. Mater. Process. Technol. 167, 201–207 (2005)
Google Scholar
Cheung, C.F., Kong, L.B., Hi, L.T., To, S.: Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing. Precis. Eng. 35, 574–590 (2011)
Google Scholar
Zhao, Y., Kunieda, M., Abe, K.: Study of EDM cutting of single crystal silicon carbide. Precis. Eng. 38, 92–99 (2014)
Google Scholar
Kawanaka, T., Kato, S., Kunieda, M., Murray, J.W., Clare, A.T.: Selective surface texturing using electrolyte jet machining. Procedia CIRP 13, 345–349 (2014)
Google Scholar
Fang, F.Z., Zhang, X.D., Guo, Y.B., Byrne, G., Hansen, H.N.: Nanomanufacturing—perspective and applications. CIRP Ann. 66, 683–705 (2017)
Google Scholar
Thompson, D.O., Chimenti, D.E.: Review of of Progress in Quantitative Nondestructive Evaluation. Springer, Berlin (1996)
Google Scholar
I. Altpeter, G. Dobmann, NDE of material degradation by embrittlement and fatigue, in: Proceedings of AIP International Conference, Bellingham, USA, 2003, pp. 15–21.
Duffour, P., Morbidini, M., Cawley, P.: Comparison between a type of vibro-acoustic modulation and damping measurement as NDT techniques. NDT E Int. 39, 123–131 (2006)
Google Scholar
Buyukozturk, O., Tasdemir, M.A.: Nondestructive Testing of Materials and Structures. Springer, Berlin (2011)
Google Scholar
L. J. Bond, N. G. Meyendorf. NDE and SHM in the age of industry 4.0, in: Proceedings of 12th International Workshop on Structural Health Monitoring, Stanford, USA, 2019, pp. 3–15.
Lopez, A.B., Santos, J., Sousa, J.P., Santos, T.G., Quintino, L.: Phased array ultrasonic inspection of metal additive manufacturing parts. J. Nondestr. Eval. 38, 1–11 (2019)
Google Scholar
Schumacher, D., Meyendorf, N., Hakim, I., Ewert, U.: Defect recognition in CFRP components using various NDT methods within a smart manufacturing process. AIP Conf. Proc. 37, 020024-1–020024-11 (2018)
Google Scholar
Senni, L., Laureti, S., Rizwan, M.K., Burrsascano, P., Hutchins, D.A., Davis, L.A.J., Ricci, M.: Multi-spectral near infrared NDE of polymer composites. NDT E Int. 102, 281–286 (2019)
Google Scholar
Xiao, H., Chen, D., Xu, J., Guo, S.: Defects identification using the improved ultrasonic measurement model and support vector machines. NDT E Int. 111, 102223 (2020)
Google Scholar
Zanini, F., Sbettega, E., Sorgato, M., Camignato, S.: New approach for verifying the accuracy of X-ray computed tomography measurements of surface topographies in additively manufactured metal parts. J. Nondestr. Eval. 38, 1–10 (2019)
Google Scholar
G. Davis, P. Rajagopal, K. Balasubramaniam, S. Palanisamy, R. Nagarajah, Laser generation of narrowband lamb waves for in-situ inspection of additively manufactured metal components, in: Proceedings of 45th Annual Review of Progress in Quantitative Nondestructive Evaluation, Vermont, USA, 2018, pp. 1–6.
Davis, G., Nagarajah, R., Palanisamy, S., Rashid, R.A.R., Rajagopal, P., Balasubramaniam, K.: Laser ultrasonic inspection of additive manufactured components. Int. J. Adv. Manuf. Technol. 102, 2571–2579 (2019)
Google Scholar
Matzkanin, G.A.: Selecting a nondestructive testing method: Visual inspection. AMMTIAC Q. 1, 7–10 (2006)
Google Scholar
Arnolli, M.M., Buijze, M., Franken, M., de Jong, K.P., Brouwer, D.M., Broeders, I.A.M.J.: System for CT-guided needle placement in the thorax and abdomen: a design for clinical acceptability, applicability and usability. Int. J. Med. Robotics Comput. Assist. Surg. 14, 1–11 (2018)
Google Scholar
Kou, M., Liu, X., Tang, S., Wang, Y.: 3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydromechanical loading. Theor. Appl. Fract. Mech. 104, 102396 (2019)
Google Scholar
Kou, M., Liu, X., Tang, S., Wang, Y.: Measurement of taylor bubble shape in square channel by microfocus X-ray computed tomography for investigation of mass transfer. Flow Meas. Instrum. 53, 49–55 (2017)
Google Scholar
Moroni, G., Petrò, S.: Segmentation-free geometrical verification of additively manufactured components by x-ray computed tomography. CIRP Ann. Manuf. Technol. 67, 519–522 (2018)
Google Scholar
Erdem, S., Gurbuz, E., Uysal, M.: Micro-mechanical analysis and X-ray computed tomography quantification of damage in concrete with industrial by-products and construction waste. J. Cleaner Prod. 189, 933–940 (2018)
Google Scholar
Maire, E., Buffiere, J., Salvo, L., Blandin, J.J., Ludwig, W., Letang, J.M.: On the application of X-ray microtomography in the field of materials science. Adv. Eng. Mater. 3, 539–546 (2001)
Google Scholar
Zanini, F., Carmignato, S., Savio, E., Affatato, S.: Uncertainty determination for X-ray computed tomography wear assessment of polyethylene hip joint prostheses. Precis. Eng. 52, 477–483 (2018)
Google Scholar
Esposito, F., Gatto, A., Bassoli, E., Denti, L.: A study on the use of XCT and FEA to predict the elastic behavior of additive manufactured parts of cylindrical geometry. J. Nondestr. Eval. 37, 1–7 (2019)
Google Scholar
Bourell, D., Kruth, J.P., Leu, M., Levy, G., Rosen, D., Beese, A.M., Clare, A.: Materials for additive manufacturing. CIRP Ann. 66, 659–681 (2017)
Google Scholar
Nadimpalli, V.K., Yang, L., Nagy, P.B.: In-situ interfacial quality assessment of ultrasonic additive manufacturing components using ultrasonic NDE. NDT E Int. 93, 117–130 (2018)
Google Scholar
Zikmund, T., Salplachta, J., Zatocilova, A., Brinek, A., Pantelejev, L., Stepanek, R., Kountny, D., Palousek, D., Kaiser, J.: Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples. NDT E Int. 103, 111–118 (2019)
Google Scholar
Lou, S., Jiang, X., Sun, W., Zeng, W., Pagani, L., Scott, P.J.: Characterisation methods for powder bed fusion processed surface topography. Precis. Eng. 57, 1–15 (2019)
Google Scholar
Simonelli, M., Aboulkhair, N.T., Rasa, M., East, M., Tuck, C., Wildman, R., Salmons, O., Hague, R.: Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Addit. Manuf. 30, 100930 (2019)
Google Scholar
Khosravani, M.R., Zolfagharian, A., Jennings, M., Reinicke, T.: Structural performance of 3D-printed composites under various loads and environmental conditions. Polym. Test. 91, 106770 (2020)
Google Scholar
Maskery, I., Aboulkhair, N.T., Corfield, M.R., Tuck, C., Clare, A.T., Leach, R.K., Wildman, R.D., Ashcroft, I.A., Hague, R.J.M.: Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 111, 193–204 (2016)
Google Scholar
H. Taheri, L. Koester, T. Bigelow, L. J. Bond. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defect in additively manufactured materials. in: Proceedings of 44th Annual Review of Progress in Quantitative Nondestructive Evaluation, American Institute of Physics (AIP), Utah, USA, 2018, pp. 020011-1-020011-13.
Chiffre, L.D., Carmignato, S., Kruth, J.P., Schmitt, R., Weckenmann, A.: Industrial applications of computed tomography. CIRP Ann. Manuf. Technol. 63, 655–677 (2014)
Google Scholar
Thompson, A., Maskery, I., Leach, R.K.: X-ray computed tomography for additive manufacturing: a review. Meas. Sci. Technol. 27, 1–17 (2016)
Google Scholar
du Plessis, A., Yadroitsev, I., Yadroitsava, I., Roux, S.G.L.: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications, 3D Print. Addit. Manuf. 5, 227–247 (2018)
Google Scholar
du Plessis, A., Broeckhoven, C.: Looking deep into nature: a review of micro-computed tomography in biomimicry. Acta Biomater. 85, 27–40 (2019)
Google Scholar
du Plessis, A., Yadroitsava, I., Yadroitsev, I.: Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights. Mater. Des. 189, 108385 (2019)
Google Scholar
Mazumder, J.: Design for metallic additive manufacturing machine with capability for “certify as you build”. Procedia CIRP 36, 187–192 (2015)
Google Scholar
ASTM F2792 -12 Standard Terminology for Additive Manufacturing Technologies, Standard. American Society for Testing Materials, West Conshohocken, USA (2012).
Khosravani, M.R., Reinicke, T.: On the environmental impacts of 3D printing technology. Appl. Mater. Today. 20, 100689 (2020)
Google Scholar
ArabiHassen, A., Taheri, H., Vaidya, U.: Non-destructive investigation of thermoplastic reinforced composites. Compos. Part B 97, 244–254 (2016)
Google Scholar
Villarraga-Gomez, H., Herazo, E.L., Smith, S.T.: X-ray computed tomography: from medical imaging to dimensional metrology. Precis. Eng. 60, 544–569 (2019)
Google Scholar
Hsieh, J.: Computed Tomography: Principles, Design, Artifacts. And Recent Advances. SPIE Press, Bellingham (2009)
Google Scholar
duPlessis, A., IeRoux, S.G., Tshibalanganda, M.: Advancing X-ray micro computed tomography in Africa: going far, together. Sci. Afr. 3, e00061 (2019)
Google Scholar
Taheri, H., Hassen, A.A.: Nondestructive ultrasonic inspection of composite materials: a comparative advantage of phased array ultrasonic. Appl. Sci. 9, 1–16 (2019)
Google Scholar
Vavilov, V., Pan, Y.Y., Nesteruk, D.: Infrared thermographic inspection of water ingress in composite honeycomb panels. Appl. Opt. 55, 120–125 (2016)
Google Scholar
Gao, W., Kim, S.W., Bosse, H., Haitjema, H., Chen, Y.L., Lu, X.D., Knapp, W., Weckenmann, A., Estler, W.T., Kunzmann, H.: Measurement technologies for precision positioning. CIRP Ann. Manuf. Technol. 64, 773–796 (2015)
Google Scholar
N. Meyendorf, S. Sthish, C. J. Druffner, J. L. Blackshire, J. P. Hoffmann, Q. Zhan, R. J. Andrews. High-resolution nondestructive evaluation at the center for materials diagnosis, in: Proceedings of The International Society for Optical Engineering, California, USA, 2004, pp. 256–265.
N. Gandhi, R. Rose, A. Croxford, C. Ward. Developing a high-fidelity knowledge base for non-destructive testing and composite material products: a review, in: Proceedings of 58th Annual British Conference of Non-destructive testing, Telford, UK, 2019, pp. 1–12.
Tansel, I.N., Inanc, F., Reen, N., Chen, P., Wang, X., Kropas-Hughes, C., Yenilmez, A.: Neural network based thickness estimation from multiple radiographic images. J. Nondestr. Eval. 25, 53–66 (2006)
Google Scholar
Dong, J., Kim, B., Locquet, A., McKeon, P., Declercq, N., Citrin, D.S.: Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos. Part B 79, 667–675 (2015)
Google Scholar
Mankovich, N.J., Cheeseman, A.M., Stoker, N.G.: The display of three dimensional anatomy with stereolithographic models. J. Digit. Imaging 3, 200–203 (1990)
Google Scholar
Marro, A., Bandukwala, T., Mak, W.: Three-dimensional printing and medical imaging: a review of the methods and applications. Curr. Probl. Diagn. Radiol. 45, 2–9 (2016)
Google Scholar
F. Losano, G. Marinsek, A. M. Merlo, M. Ricci, Computed tomography in the automotive field. Development of a new engine head case study, in: Proceedings of Deutsche Gesellschaft Zerstörungsfreie Prüfung, Berlin, Germany, 1999, pp. 65–73.
Opris, A.L., Lonescu, S.C.: The life cycle of medical imaging technology. J. Inf. Syst. Oper. Manag. 10, 404–415 (2016)
Google Scholar
du Plessis, A., le Roux, S.G., Steyn, F.: Quality investigation of 3D printer filament using laboratory X-ray tomography, 3D print. Addit. Manuf. 3, 1–6 (2013)
Google Scholar
du Plessis, A., Broeckhoven, C., Yadroitsava, I., Yadroitsev, I., Hands, C.H., Kunju, R., Bhate, D.: Beautiful and functional: a review of biomimetic design in additive manufacturing. Addit. Manuf. 27, 408–427 (2019)
Google Scholar
Rivas Santos, V.M., Thompson, A., Sims-Waterhouse, D., Maskery, I., Wolliams, P., Leach, R.: Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach. Addit. Manuf. 32, 100964 (2020)
Google Scholar
Leung, C.L.A., Marussi, S., Atwood, R.C., Towire, M., Withers, P.J., Lee, P.D.: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat. Commun. 9, 1355 (2018)
Google Scholar
Calta, N.P., Wang, J., Kiss, A.M., Martin, A.A., Depond, P.J., Guss, G.M., Thampy, V., Fong, A.Y., Weker, J.N., Stone, K.H., Tassone, C.J., Kramer, M.J., Toney, M.F., Buuren, A.V., Matthews, M.J.: An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Rev. Sci. Instrum. 89, 055101-1–55108 (2018)
Google Scholar
Wolff, S.J., Wu, H., Parab, N., Zhao, C., Ehmann, K.F., Sun, T., Cao, J.: In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing. Sci. Rep. 9, 1–14 (2019)
Google Scholar
Tammas-Williams, S., Withers, P.J., Todd, I., Prangnell, P.B.: Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 12202, 72–76 (2016)
Google Scholar
Khosravani, M.R.: Influences of defects on the performance of adhesively bonded sandwich joints. Key Eng. Mater. 789, 45–50 (2018)
Google Scholar
Montinaro, N., Cerniglia, D., Pitarresi, G.: Defect detection in additively manufactured titanium prosthesis by flying laser scanning thermography. Procedia Struct. Integr 12, 165–172 (2018)
Google Scholar
Kong, L., Ostadhassan, M., Li, C., Tamimi, N.: Pore characterization of 3D-printed gypsum rocks: a comprehensive approach. J. Mater. Sci. 53, 5063–5078 (2018)
Google Scholar
Samei, J., Amirmaleki, M., Shirinzadeh Dastgiri, M., Marinelli, C., Green, D.E.: In-situ X-ray tomography analysis of the evolution of pores during deformation of AlSi10Mg fabricated by selective laser melting. Mater. Lett. 255, 126512 (2019)
Google Scholar
Holzmond, O., Li, X.: In situ real time defect detection of 3D printed parts. Addit. Manuf. 17, 135–142 (2017)
Google Scholar
Grasso, M., Demir, A.G., Previtali, B., Colosimo, B.M.: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Rob. Comput. Integr. Manuf. 49, 229–239 (2018)
Google Scholar
Cerniglia, D., Montinaro, N.: Defect detection in additively manufactured components: laser ultrasound and laser thermography comparison. Procedia Struct. Integr. 8, 154–162 (2018)
Google Scholar
Smith, T.R., Sugar, J.D., Schoenung, J.M., Marchi, C.S.: Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel. Mater. Sci. Eng. A 765, 138268 (2019)
Google Scholar
Pinto, F.C., Souza Filho, I.R., Sandim, M.J.R., Sandim, H.R.Z.: Defects in parts manufactured by selective laser melting caused by δ- ferritein reused 316L steel powder feedstock. Addit. Manuf. 31, 100979 (2020)
Google Scholar
Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)
Google Scholar
Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., Kruth, J.P.: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng. A 528, 7423–7431 (2011)
Google Scholar
Harbe, N.W., Heinl, P., Flinn, B., Korner, C., Bordia, R.K.: Compression compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V). J. Biomed. Mater. Res. B 99, 313–320 (2011)
Google Scholar
Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Van Oosterwyck, J.S.H.: Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8, 1648–1658 (2012)
Google Scholar
Van Bael, S., Chai, Y.C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Kruth, J.P., Schrooten, J.: The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 8, 2824–2834 (2012)
Google Scholar
Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Troster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)
Google Scholar
Ziolkowski, G., Chlebus, E., Szmczyk, P., Kurazc, J.: Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Arch. Civil. Mech. Eng. 14, 608–614 (2014)
Google Scholar
L. J. Bond, N. J. Gray, F. J. Margetan, D. Utrata, I. E. Anderson, “NDE for Adding Value to Materials from Metal Powder Processing,” Advances in Powder Metallurgy and Particulate Materials – 2014, Proceedings of the 2014 World Congress on Powder Metallurgy and Particulate Materials, Orlando, Florida, compiled by R. A. Chernenkoff and W. B. James, Metal Powder Industries Federation. (2014), Part 11, pp. 1944–1959.
Taheri, H., Shoaib, M.R.M., Koester, L.W., Bigelow, T.A., Collins, P.C., Bond, L.J.: Powder-based additive manufacturing—a review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int. J. Addit. Subtractive Mater. Manuf. 1, 172–209 (2017)
Google Scholar
Dupin, S., Lame, O., Barres, C., Charmeau, J.Y.: Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur. Polym. J. 48, 1611–1621 (2012)
Google Scholar
Rouholamin, D., Hopkinson, N.: An investigation on the suitability of micro-computed tomography as a non-destructive technique to assess the morphology of laser sintered nylon 12 parts. J. Eng. Manuf. 228, 1529–1542 (2014)
Google Scholar
Ghita, O.R., James, E., Trimble, R., Evans, K.E.: Physico-chemical behaviour of Poly (Ether Ketone) (PEK) in high temperature laser sintering (HT-LS). J. Mater. Process. Technol. 214, 969–978 (2014)
Google Scholar
Wang, X., Zhao, L., Fuh, J.Y.H., Lee, H.P.: Effect of porosity on mechanical properties of 3D printed polymers:experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers 11, 1–20 (2019)
Google Scholar
Siddique, S., Imran, M., Rauer, M., Kaloudis, M., Wycisk, E., Emmelmann, C., Walther, F.: Computed tomography for characterization of fatigue performance of selective laser melted parts. Mater. Des. 83, 661–669 (2015)
Google Scholar
Leuders, S., Vollmer, M., Brenne, F., Tröster, T., Niendorf, T.: Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting. Metall. Mater. Trans. A. 46, 1–8 (2015)
Google Scholar
Biswal, R., Zhang, X., Shamir, M., Al Mamun, A., Awd, M., Walther, F., Khadar Syed, A.: Interrupted fatigue testing with periodic tomography to monitor porositydefects in wire + arc additive manufactured Ti-6Al-4V. Addit. Manuf. 28, 517–527 (2019)
Google Scholar
Yan, C., Hao, L., Hussein, A., Raymont, D.: Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf. 62, 32–38 (2012)
Google Scholar
du Plessis, A., Sperling, P., Beerlink, A., du Preez, W.B., le Roux, S.G.: Standard method for micro CT-based additive manufacturing quality control 4: metal powder analysis. MethodsX 5, 1336–1345 (2018)
Google Scholar
Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014)
Google Scholar
Karme, A., Kallonen, A., Matilainen, V.P., Piili, H., Salminen, A.: Possibilities of CT scanning as analysis method in laser additive manufacturing. Phys. Procedia 78, 347–356 (2015)
Google Scholar
du Plessis, A., le Roux, S.G., Els, J., Booysen, G., Blaine, D.C.: Application of microCT to the non-destructive testing of an additive manufactured titanium component. Case Stud. Nondestr. Test. Eval. 4, 1–7 (2015)
Google Scholar
Damon, J., Dietrich, S., Vollert, F., Gibmeier, J., Schulze, V.: Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts. Addit. Manuf. 20, 77–89 (2018)
Google Scholar
F. Leonard, S. Tammas-Williams, P. B. Prangnell, I. Todd, P. J. Withers, Assessment by X-ray CT of the effects of geometry and build direction on defects in titanium ALM parts, in: Proceedings of 4th Conference on Industrial Computed Tomography, Wels, Austria, 2012, pp. 85–93.
Attar, H., Lober, L., Funk, A., Calin, M., Zhang, L.C., Prashanth, K.G., Sxudino, S., Zhang, Y.S., Eckert, J.: Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 625, 350–356 (2019)
Google Scholar
Tammas-Williams, S., Zhao, H., Leonard, F., Derguti, F., Todd, I., Prangnell, P.B.: XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by selective electron beam melting. Mater. Charact. 102, 47–61 (2015)
Google Scholar
Tammas-Williams, S., Withers, P.J., Todd, I., Prangell, P.B.: The effectiveness of hot isostatic pressing for closing porosity in titanium parts manufactured by selective electron beam melting. Metall. Mater. Trans. A 47, 1939–1946 (2016)
Google Scholar
H. Choo, K. L. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P. J. Depond, M. J. Matthews, E. Garela, Effect of laser power on defect, texture, and microstructure of a laserpowder bed fusion processed 3167l.
Melenka, G.W., Schofield, J.S., Dawson, M.R., Carey, J.P.: Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyp J. 21, 618–627 (2015)
Google Scholar
Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D.K., Matsushita, T., Sasaki, K., Sishida, N., Kokubo, T., Nakamura, T.: Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 7, 2327–2336 (2011)
Google Scholar
Xia, Y., Zhou, P., Cheng, X., Xie, Y., Liang, C., Li, C., Xu, S.: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ǫ-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomed. 8, 4197–4213 (2013)
Google Scholar
Stok, J.V., Van der Jagt, O.P., Yavari, S.A., Haas, M.F., Waarsing, J.H., Jahr, H., Lieshout, E.M., Patka, P., Verhaar, J.A., Zadpoor, A.A., Weinans, H.: Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J. Orthop. Res. 31, 792–799 (2013)
Google Scholar
Hildebrand, T., Ruegsegger, P.: A new method for the modelindependent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997)
Google Scholar
Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., Christ, H., Wu, L.: Advanced micro-lattice materials. Adv. Eng. Mater. 17, 1253–1264 (2015)
Google Scholar
Grunsven, W.V., Hernandez-Nava, E., Reilly, G.C., Goodall, R.: Fabrication and mechanical characterization of titanium lattices with graded porosity. Metals 4, 401–409 (2015)
Google Scholar
Sercombe, T.B., Xu, X., Challis, V., Green, R., Yue, S., Zhang, Z., Lee, P.D.: Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting. Mater. Des. 67, 501–508 (2015)
Google Scholar
Abele, E., Stoffregen, H.A., Klimkeit, K., Hoche, H., Oechsner, M.: Optimisation of process parameters for lattice structures. Rapid Prototyp. 21, 117–127 (2015)
Google Scholar
Ferrucci, M., Leach, R.K., Giusca, C., Carmignato, S., Dewulf, W.: Towards geometrical calibration of x-ray computed tomography systems—a review. Meas. Sci. Technol. 26, 1–30 (2015)
Google Scholar
Kruth, J.P., Bartscher, M., Carmiganto, S., Schmitt, R., Chiffre, L.D., Weckenmann, A.: Computed tomography for dimensional metrology. CIRP Ann. Manuf. Technol. 60, 821–842 (2011)
Google Scholar
Carmignato, S.: Accuracy of industrial computed tomography measurements: experimental results from an international comparison. CIRP Ann. 61, 491–494 (2012)
Google Scholar
Howe, R., Shahbazmohamadi, S., Bass, R., Singh, P.: Digital evaluation and replication of period wind instruments: the role of micro-computed tomography and additive manufacturing. Early Music. 42, 529–536 (2014)
Google Scholar
Laycock, S.D., Bell, G.D., Corps, N., Mortimore, D.B., Cox, G., May, S., Finkel, I.: Using a combination of micro-computed tomography, CAD and 3D printing techniques to reconstruct incomplete 19th-century Cantonese chess pieces. J. Comput. Cult. Herit. 7, 1–6 (2015)
Google Scholar
Townsend, A., Racasan, R., Lech, R., Senin, N., Thompson, A., Ramsey, A., Bate, D., Woolliams, P., Brwon, S., Blunt, L.: An interlaboratory comparison of X-ray computed tomography measurement for texture and dimensional characterisation of additively manufactured parts. Addit. Manuf. 23, 422–432 (2018)
Google Scholar
Villarraga-Gomez, H.: Seeing is believing: X-ray computed tomography for quality control. Qual. Mag. 55, 20–23 (2016)
Google Scholar
Spierings, A., Schneider, N., Eggenberger, R.: Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J. 17, 380–386 (2011)
Google Scholar
du Plessis, A., Meincken, M., Seifert, T.: Quantitative determination of density and mass of polymeric materials using microfocus computed tomography. J. Nondestruct. Eval. 32, 413–417 (2013)
Google Scholar
Carlton, H.D., Haboub, A., Gallegos, G.E., Parkinson, D.Y., Mac Dowell, A.A.: Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater. Sci. Eng. A 651, 406–414 (2016)
Google Scholar
Rashid, R., Masood, S.H., Ruan, D., Palanisamy, S., Rahman Rashid, R.A., Brandt, M.: Effect of scan strategy on density and metallurgical properties of 17–4PH parts printed by Selective Laser Melting (SLM). J. Mater. Process. Technol. 249, 502–511 (2017)
Google Scholar
du Plessis, A., le Roux, S.G., Guelpa, A.: Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016)
Google Scholar
Pyka, G., Kerckhofs, G., Papantoniou, I., Speirs, M., Schrooten, J., Wevers, M.: Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials 6, 4737–4757 (2013)
Google Scholar
Kerckhofs, G., Pyka, G., Moesen, M., Van Bael, S., Schrooten, J., Wevers, M.: High-resolution microfocus x-ray computed tomography for 3D surface roughness measurements of additive manufactured porous materials. Adv. Eng. Mater. 15, 153–158 (2013)
Google Scholar
Snyder, J.C., Stimpson, C.K., Thole, K.A., Mongillo, D.J.: Build direction effects on microchannel tolerance and surface roughness. J. Mech. Des. 137, 111411 (2015)
Google Scholar
Thompson, A., Senin, N., Giusca, C., Leach, R.: Topography of selectively laser melted surfaces: a comparison of different measurement methods. CIRP Ann. Manuf. Technol. 66, 543–546 (2017)
Google Scholar
Townsend, A., Pagani, L., Scott, P., Blunt, L.: A real surface texture data extraction from X-ray computed tomography reconstructions of metal additively manufactured parts. Precis. Eng. 48, 254–264 (2017)
Google Scholar
A. du Plessis, P. Sperling, A. Beerlink, O. Kruger, L. Tshabalala, S. Hossain, S. G. le Roux, Standard method for microCT-based additive manufacturing quality control 3: surface roughness. Protocols. IO (2018) 1–5.
Thompson, A., Senin, N., Maskery, I., Leach, R.: Effects of magnification and sampling resolution in X-ray computed tomography for the measurement of additively manufactured metal surfaces. Precis. Eng. 53, 54–64 (2018)
Google Scholar
Thompson, A., Senin, N., Maskery, I., Korner, L., Lawes, S., Leach, R.: Internal surface measurement of metal powder bed fusion parts. Addit. Manuf. 20, 126–133 (2018)
Google Scholar
du Plessis, A., le Roux, S.G.: Standardized X-ray tomography testing of additively manufactured parts: a round robin test. Addit. Manuf. 24, 125–136 (2018)
Google Scholar
Tammas-Williams, S., Withers, P.J., Todd, I., Prangnell, P.B.: The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci. Rep. 7, 1–13 (2017)
Google Scholar
Vaithilingam, J., Saleh, E., Körner, L., Wildman, R.D., Hague, R.J.M., Leach, R.K., Tuck, C.J.: 3-Dimensional inkjet printing of macro structures from silver nanoparticles. Mater. Des. 139, 81–88 (2018)
Google Scholar
Kelly, C.N., Evans, N.T., Irvin, C.W., Chapman, S.C., Gall, K., Safranski, D.L.: The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Mater. Sci. Eng. C 98, 726–736 (2019)
Google Scholar
Leach, R.K., Bourell, D., Carmignato, S., Donmez, A., Senin, N., Dewulf, W.: Geometrical metrology for metal additive manufacturing. CIRP Ann. Manuf. Technol. 68, 677–700 (2019)
Google Scholar
Ramakrishna, K., Muralidhar, K., Munshi, P.: Beam-hardening in simulated X-ray tomography. NDT E Int. 39, 449–457 (2006)
Google Scholar
Ketcham, R.A., Hanna, R.D.: Beam hardening correction for X-ray computed tomography of heterogeneous natural materials. Comput. Geosci. 67, 49–61 (2014)
Google Scholar
Rueckel, J., Stockmar, M., Pfeiffer, F., Herzen, J.: Spatial reolution characterization of a X-ray microCT system. Appl. Radiat. Isot. 94, 230–234 (2014)
Google Scholar