Skip to main content
Log in

Second Order Unconditionally Convergent Fully Discrete Scheme for Incompressible Vector Potential MHD System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present and analyze a second order unconditionally convergent mixed finite element method for solving incompressible magnetohydrodynamic problem based on magnetic vector potential. We utilize the second-order backward difference formula within the framework of the mixed finite element method and linearize the nonlinear terms by using the extrapolated technique. The finite element approximation is proposed with the fluid equations are discretized by Taylor–Hood type elements and the magnetic vector potential equation by edge elements. As a result, the divergence-free condition on the magnetic induction preserves exactly on the discrete level. Unconditional error estimates for the velocity and magnetic vector potential are established in the sense that no any restrictions are imposed on the relationship between the time-step size and the spatial size. Finally, several three-dimensional numerical simulations are carried out to illustrate the developed scheme, including convergence tests and some benchmark problems, such as the driven cavity problems and hydromagnetic Kelvin–Helmholtz instability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data in this article are available from the corresponding author upon reasonable request.

References

  1. Balsara, D.S., Kim, J.: A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys. J. 602, 1079 (2004)

    Article  Google Scholar 

  2. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  Google Scholar 

  3. Baty, H., Keppens, R., Comte, P.: The two-dimensional magnetohydrodynamic Kelvin–Helmholtz instability: compressibility and large-scale coalescence effects. Phys. Plasmas 10, 4661–4674 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ben Salah, N., Soulaimani, A., Habashi, W.G.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190, 5867–5892 (2001)

    Article  MathSciNet  Google Scholar 

  5. Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000)

    Article  MathSciNet  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer Series in Computational Mathematics, Springer, Heidelberg (2013)

    Book  Google Scholar 

  7. Brackbill, J.: Fluid modeling of magnetized plasmas. Space Plasma Simul. 42, 153–167 (1985)

    Article  Google Scholar 

  8. Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot { B}\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  10. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)

  11. Cai, W., Wu, J., Xin, J.: Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)

    Article  MathSciNet  Google Scholar 

  12. Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59, 1495–1510 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ciarlet, P.G.: The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford. Stud. Math. Appl. 4, 1–511 (1978)

    Google Scholar 

  14. Costabel, M., Dauge, M.: Singularities of Maxwell’s equations on polyhedral domains, in Analysis, numerics and applications of differential and integral equations (Stuttgart,: vol. 379 of Pitman Res. Notes Math. Ser. Longman, Harlow 1998, 69–76 (1996)

    Google Scholar 

  15. Cyr, E.C., Shadid, J.N., Tuminaro, R.S., Pawlowski, R.P., Chacón, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35, B701–B730 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dai, W., Woodward, P.R.: On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows. Astrophys. J. 494, 317–335 (1998)

    Article  Google Scholar 

  17. Davidson, P.A.: An introduction to magnetohydrodynamics Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK (2001)

    Book  Google Scholar 

  18. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  Google Scholar 

  19. Ding, Q., Long, X., Mao, S.: Convergence analysis of Crank–Nicolson extrapolated fully discrete scheme for thermally coupled incompressible magnetohydrodynamic system. Appl. Num. Math. 157, 522–543 (2020)

    Article  MathSciNet  Google Scholar 

  20. Ding, Q., Long, X., Mao, S.: Error estimate of a fully discrete finite element method for incompressible vector potential magnetohydrodynamic system. J. Sci. Comput. 88, 71 (2021)

    Article  MathSciNet  Google Scholar 

  21. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport model. Astrophys. J. 332, 659 (1988)

    Article  Google Scholar 

  22. Fey, M., Torrilhon, M.: A constrained transport upwind scheme for divergence-free advection, in Hyperbolic problems: theory, numerics, applications, pp. 529–538. Springer, Berlin (2003)

    Book  Google Scholar 

  23. Fu, P., Li, F., Xu, Y.: Globally divergence-free discontinuous Galerkin methods for ideal magnetohydrodynamic equations. J. Sci. Comput. 77, 1621–1659 (2018)

    Article  MathSciNet  Google Scholar 

  24. Gao, H., Qiu, W.: A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Engrg. 346, 982–1001 (2019)

    Article  MathSciNet  Google Scholar 

  25. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford, Numerical Mathematics and Scientific Computation (2006)

    Book  Google Scholar 

  26. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. Theory and algorithms

  27. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  28. He, Y., Sun, W.: Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45, 837–869 (2007)

    Article  MathSciNet  Google Scholar 

  29. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  30. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  Google Scholar 

  31. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28, 659–695 (2018)

    Article  MathSciNet  Google Scholar 

  32. Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40, 281–314 (2009)

    Article  MathSciNet  Google Scholar 

  33. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot B=0\) exactly for MHD models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  Google Scholar 

  34. Jones, T.W., Gaalaas, J.B., Ryu, D., Frank, A.: The MHD Kelvin-Helmholtz instability. ii. The roles of weak and oblique fields in planar flows. Astrophys. J. 482, 230 (1997)

    Article  Google Scholar 

  35. Li, B., Wang, J., Xu, L.: A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains. SIAM J. Numer. Anal. 58, 430–459 (2020)

    Article  MathSciNet  Google Scholar 

  36. Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22(23), 413–442 (2005)

    Article  MathSciNet  Google Scholar 

  37. Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)

    Article  MathSciNet  Google Scholar 

  38. Li, L., Zhang, D., Zheng, W.: A constrained transport divergence-free finite element method for incompressible MHD equations. J. Comput. Phys. 428, 109980 (2021)

    Article  MathSciNet  Google Scholar 

  39. Li, X., Wang, W., Shen, J.: Stability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations. SIAM J. Numer. Anal. 60, 1026–1054 (2022)

    Article  MathSciNet  Google Scholar 

  40. Liu, S., Huang, P., He, Y.: An optimal error estimate of the BDF-Galerkin FEM for the incompressible MHD system. J. Math. Anal. Appl. 515(126460), 30 (2022)

    MathSciNet  Google Scholar 

  41. Marioni, L., Bay, F., Hachem, E.: Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field. Phys. Fluids 28, 057102 (2016)

    Article  Google Scholar 

  42. Monk, P.: Finite element methods for Maxwell’s equations. Oxford University Press, New York, Numerical Mathematics and Scientific Computation (2003)

    Book  Google Scholar 

  43. Nédélec, J.-C.: Mixed finite elements in \({ R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  44. Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B., Abdou, M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. II. On an arbitrary collocated mesh. J. Comput. Phys. 227, 205–228 (2007)

    Article  MathSciNet  Google Scholar 

  45. Rong, Y., Hou, Y., Zhang, Y.: Numerical analysis of a second order algorithm for simplified magnetohydrodynamic flows. Adv. Comput. Math. 43, 823–848 (2017)

    Article  MathSciNet  Google Scholar 

  46. Rossmanith, J.A.: An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput. 28, 1766–1797 (2006)

    Article  MathSciNet  Google Scholar 

  47. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  Google Scholar 

  48. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  49. Shadid, J.N., Pawlowski, R.P., Banks, J.W., Chacón, L., Lin, P.T., Tuminaro, R.S.: Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys. 229, 7649–7671 (2010)

    Article  MathSciNet  Google Scholar 

  50. Tang, Z., An, R.: Error analysis of the second-order BDF finite element scheme for the thermally coupled incompressible magnetohydrodynamic system. Comput. Math. Appl. 118, 110–119 (2022)

    Article  MathSciNet  Google Scholar 

  51. Tóth, G.: The \(\nabla \cdot B=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  Google Scholar 

  52. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM Math. Model. Numer. Anal. 56, 767–789 (2022)

    Article  MathSciNet  Google Scholar 

  53. Yuksel, G., Ingram, R.: Numerical analysis of a finite element, Crank–Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model. 10, 74–98 (2013)

    MathSciNet  Google Scholar 

  54. Zhang, G.-D., He, X., Yang, X.: A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible mhd equations. J. Comput. Phys. 448, 110752 (2022)

    Article  MathSciNet  Google Scholar 

  55. Zhang, G.-D., Yang, J., Bi, C.: Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv. Comput. Math. 44, 505–540 (2018)

    Article  MathSciNet  Google Scholar 

  56. Zhang, G.-D., Yang, X.: Efficient and stable schemes for the magnetohydrodynamic potential model. Commun. Comput. Phys. 30, 771–798 (2021)

    Article  MathSciNet  Google Scholar 

  57. Zhang, L., Cui, T., Liu, H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27, 89–96 (2009)

    MathSciNet  Google Scholar 

  58. Zhang, L.-B.: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theory Methods Appl. 2, 65–89 (2009)

    MathSciNet  Google Scholar 

  59. Zhang, Y., Hou, Y., Shan, L.: Numerical analysis of the Crank–Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows. Numer. Methods Partial Differential Equations 31, 2169–2208 (2015)

    Article  MathSciNet  Google Scholar 

  60. Zhao, J.: Analysis of finite element approximation for time-dependent Maxwell problems. Math. Comp. 73, 1089–1105 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the anonymous referees for their pertinent and perceptive comments which have significantly improved our paper. Q. Ding was supported by the Natural Science Foundation of China (12201353), Shandong Province Natural Science Foundation (ZR2021QA054) and the Talent Fund of Beijing Jiaotong University (2023XKRC024), X. Long was supported by the Natural Science Foundation of China (12301499), S. Mao was supported by the National Natural Science Foundation of China (Nos. 12271514, 11871467, 12161141017) and National Key Research and Development Program of China (2023YFC3705701).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipeng Mao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Long, X., Mao, S. et al. Second Order Unconditionally Convergent Fully Discrete Scheme for Incompressible Vector Potential MHD System. J Sci Comput 100, 1 (2024). https://doi.org/10.1007/s10915-024-02553-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02553-x

Keywords

Navigation