Skip to main content

A Constrained Transport Upwind Scheme for Divergence-free Advection

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Abstract

Many transport equations in physics and engineering come along with intrinsic constraints. A standard example for an evolution equation with intrinsic constraint is given by

$$ {{\partial }_{t}}u + curlF(u) = 0,\quad divu = const. $$
((1))

where u is a space vector. The divergence constraint is intrinsic since it follows from the evolution equation and must not be viewed as an additional equation. There are several areas where equations like (1) arise: Maxwells equations, the transport of the magnetic field inmagnetohydrodynamics (MHD), or the vorticity transport in case of incompressible flows. One can easily think of other constrained transport equations. In [8] a system that conserves vorticity is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsara, D. S. and Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comp. Phys. 149, (1999) p.270

    Article  MathSciNet  MATH  Google Scholar 

  2. Brackhill, J. U. and Barnes, D. C., The effect of nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations, J. Comp. Phys. 35, (1980) p.426

    Article  Google Scholar 

  3. Dai, W. and Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J. 494, (1998) p.317

    Article  Google Scholar 

  4. DeSterck, H., Multi-Dimensional Upwind Constrained Transport on Unstructured Grids for Shallow Water Magnetohydrodynamics, AIAA Paper 2001–2623, (2001)

    Google Scholar 

  5. Evans, C. R. and Hawley, J. F., Simulation of Magnetohydrodynamic Flows: A Constrained Transport Method, Astrophys. J. 332, (1988) p.659

    Article  Google Scholar 

  6. Fey, M., Jeltsch, R., and Morel, A.-T., Multidimensional schemes for nonlinear systems of hyperbolic conservation laws, technical report nr. 1995-11, Seminar for Applied Mathematics, (1995)

    Google Scholar 

  7. Limacher, R., Simulation der MHD-Gleichungen mit der Transportmethode, diploma thesis, ETH Zurich (2000)

    Google Scholar 

  8. Morton, K. W. and Roe, P. L., Vorticity-Preserving Lax-Wendroff-Type Schemes for the System Wave Equation, SIAM J. Sci. Comp. 23/1, (2001) p.170

    Article  MathSciNet  MATH  Google Scholar 

  9. Powell, K. G., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE Report No. 94-24, (1994)

    Google Scholar 

  10. Toth, G., The ∇ · B Constraint in Shock-Capturing Magnetohydrodynamics Codes, J. Comp. Phys. 161, (2000) p.605

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fey, M., Torrilhon, M. (2003). A Constrained Transport Upwind Scheme for Divergence-free Advection. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics