Skip to main content
Log in

Robust Scheme on 3D Hybrid Meshes with Non-conformity for Maxwell’s Equations in Time Domain

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a low-order spatial discretization to solve the Maxwell equations in the time-domain, namely: the Compatible Discrete Operator scheme. The basics to build this scheme are recalled, and it is shown how this scheme allows to efficiently deal with hybrid meshes composed of a Cartesian part and a simplicial part, with polyhedra at the interface between the two. The scheme is formulated for the Maxwell equations in the case where the computational domain is surrounded by Perfectly Matched Layers. Finally, the paper proposes some numerical examples on meshes with non-conformities, to emphasize the robustness and the interest of such a scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The curves analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: A family of three-dimensional virtual elements with applications to magnetostatics. SIAM J. Numer. Anal. 56(5), 2940–2962 (2018)

    Article  MathSciNet  Google Scholar 

  2. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bochev, P., Hyman, J.: Principles of Mimetic Discretizations of Differential Operators 142, 89–119 (2007)

  4. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: Math. Model. Numer. Anal. 48(2), 553–581 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bonelle, J., Di Pietro, D., Ern, A.: Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Comput. Aided Geom. Des. 35(36), 27–41 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bossavit, A.: Computational electromagnetism and geometry: (5) the Galerkin Hodge. J. Japan. Soc. Appl. Electromagn. Mech. 8, 203–209 (2000)

  7. Bossavit, A.: generalized finite differences in computational electromagnetics. Prog. Electromagn. Res. 32, 45–64 (2001)

  8. Brezzi, F., Buffa, A.: Innovative mimetic discretizations for electromagnetic problems. J. Comput. Appl. Math. 234(6), 1980–1987 (2010)

    Article  MathSciNet  Google Scholar 

  9. Buksas, M.: Implementing the perfectly matched layer absorbing boundary condition with mimetic differencing schemes. Prog. Electromagn. Res. 32, 383–411 (2001)

    Article  Google Scholar 

  10. Chew, W.C., Weedon, W.H.: A 3d perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)

    Article  Google Scholar 

  11. Codecasa, L., Trevisan, F.: Convergence of electromagnetic problems modelled by discrete geometric approach. Comput. Model. Eng. Sci. 58(1), 15–44 (2010)

    MathSciNet  Google Scholar 

  12. Codecasa, L., Specogna, R., Trevisan, F.: Symmetric positive-definite constitutive matrices for discrete eddy-current problems. IEEE Trans. Magn. 43(2), 510–515 (2007)

    Article  Google Scholar 

  13. Codecasa, L., Specogna, R., Trevisan, F.: A new set of basis functions for the discrete geometric approach. J. Comput. Phys. 229(19), 7401–7410 (2010)

    Article  MathSciNet  Google Scholar 

  14. Di Pietro, D., Droniou, J.: An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de rham sequence. J. Comput. Phys. 429, 109991 (2021)

    Article  MathSciNet  Google Scholar 

  15. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2009)

    Article  MathSciNet  Google Scholar 

  16. Lassas, M., Liukkonen, J., Somersalo, E.: Complex Riemannian metric and absorbing boundary conditions. J. de Math. Pures et Appl. 80(7), 739–768 (2001)

    Article  MathSciNet  Google Scholar 

  17. Lipnikov, L., Manzini, G., Brezzi, F., Buffa, A.: The mimetic finite difference method for the 3d magnetostatic field problems on polyhedral meshes. J. Comput. Phys. 230(2), 305–328 (2011)

    Article  MathSciNet  Google Scholar 

  18. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

    Article  MathSciNet  Google Scholar 

  19. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Ritzenthaler.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritzenthaler, V., Cantin, P. & Ferrieres, X. Robust Scheme on 3D Hybrid Meshes with Non-conformity for Maxwell’s Equations in Time Domain. J Sci Comput 99, 73 (2024). https://doi.org/10.1007/s10915-024-02533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02533-1

Keywords

Mathematics Subject Classification

Navigation