Skip to main content
Log in

Analysis of an Energy-Dissipating Finite Volume Scheme on Admissible Mesh for the Aggregation-Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop the numerical analysis of an energy-dissipating finite volume scheme on admissible meshes for the non-local, nonlinear aggregation-diffusion equations. Crucially, this scheme keeps the dissipation property unconditionally of an associated fully discrete energy, and preserves the mass and positivity conservation of the density. We establish the well-posedness, stability and error analysis of the method. Several numerical examples are presented to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

The data that support the findings of this study are openly available on GitHub at https://github.com/ZengPing35/Y_Aggregation-Diffusion.

References

  1. Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. ESAIM: Math. Model. Numer. Anal. 33(2), 439–441 (1999)

    Article  Google Scholar 

  2. Garnier, J., Papanicolaou, G., Yang, T.W.: Large deviations for a mean field model of systemic risk. J. Financial Math. 4(1), 151–184 (2013)

    Article  MathSciNet  Google Scholar 

  3. Holm, D., Putkaradze, V.: Formation of clumps and patches in self-aggregation of finite-size particles. Physica D 220(2), 183–196 (2006)

    Article  MathSciNet  Google Scholar 

  4. Adams, R.A., Fournier, J.J.: Sobolev spaces. Elsevier, Amsterdam (2003)

    Google Scholar 

  5. Baba, K., Tabata, M.: On a conservation upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. 15(1), 3–25 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bailo, R., Carrillo, J.A., Hu, J.: Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient flow structure. Math. Sci. 18(5), 1259–1303 (2018)

    MathSciNet  Google Scholar 

  7. Bailo, R., Carrillo, J.A., Murakawa, H., Schmidtchen, M.: Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations. Math. Models Methods Appl. Sci. 30(13), 2487–2522 (2020)

    Article  MathSciNet  Google Scholar 

  8. Barbaro, A.B.T., Canizo, J.A., Carrillo, J.A., Degond, P.: Phase transitions in a kinetic flocking model of Cucker-Smale type. Multiscale Model. Simul. 14(3), 1063–1088 (2016)

    Article  MathSciNet  Google Scholar 

  9. Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Stat. Phys. 91, 979–990 (1998)

    Article  MathSciNet  Google Scholar 

  10. Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. ESAIM: Math. Model. Numer. Anal. 31(5), 615–641 (1997)

    Article  MathSciNet  Google Scholar 

  11. Bertozzi, A.L., Kolokolnikov, T., Sun, H., Uminsky, D., Von, B.J.: Ring patterns and their bifurcations in a nonlocal model of biological swarms. Commun. Math. Sci. 13(4), 955–985 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bessemoulin, C.M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. J. Sci. Comput. 34(5), B559–B583 (2012)

    MathSciNet  Google Scholar 

  13. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)

    Article  MathSciNet  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)

    Book  Google Scholar 

  15. Burger, M., Capasso, V., Morale, D.: On an aggregation model with long and short range interactions. Nonlinear Anal. Real World Appl. 8(3), 939–958 (2007)

    Article  MathSciNet  Google Scholar 

  16. Burger, M., Carrillo, J.A., Wolfram, M.T.: A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3, 59–83 (2009)

    Article  MathSciNet  Google Scholar 

  17. Cai, Z.: On the finite volume element method. Numer. Math. 58(1), 713–735 (1990)

    Article  MathSciNet  Google Scholar 

  18. Calvez, V., Carrillo, J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. Journal de mathématiques pures et appliquées 86(2), 155–175 (2006)

    Article  MathSciNet  Google Scholar 

  19. Carrillo, J.A., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17(1), 233–258 (2015)

    Article  MathSciNet  Google Scholar 

  20. Carrillo, J.A., Craig, K., Wang, L., Wei, C.: Primal dual methods for Wasserstein gradient flows. Found. Comut. Math. 22, 389–443 (2022)

    Article  MathSciNet  Google Scholar 

  21. Carrillo, J.A., Filbet, F., Schmidtchen, M.: Convergence of a finite volume scheme for a system of interacting species with cross-diffusion. Numer. Math. 145, 473–511 (2020)

    Article  MathSciNet  Google Scholar 

  22. Carrillo, J.A., Huang, Y., Patacchini, F.S., Wolansky, G.: Numerical study of a particle method for gradient flows. Kinet. Relat. Models 10(3), 613–641 (2017)

    Article  MathSciNet  Google Scholar 

  23. Carrillo, J.A., Huang, Y., Schmidtchen, M.: Zoology of a nonlocal cross-diffusion model for two species. J. Appl. Math. 78(2), 1078–1104 (2018)

    MathSciNet  Google Scholar 

  24. Carrillo, J.A., McCann, R.J., Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MathSciNet  Google Scholar 

  25. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM, USA (2002)

    Book  Google Scholar 

  26. Craig, K., Bertozzi, A.: A blob method for the aggregation equation. Math. Comput. 85(300), 1681–1717 (2016)

    Article  MathSciNet  Google Scholar 

  27. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    MathSciNet  Google Scholar 

  28. Fetecau, R.C., Huang, Y., Kolokolnikov, T.: Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681 (2011)

    Article  MathSciNet  Google Scholar 

  29. Garnier, J., Papanicolaou, G., Yang, T.W.: Consensus convergence with stochastic effects. Vietnam J. Math. 45, 51–75 (2017)

    Article  MathSciNet  Google Scholar 

  30. Holm, D., Putkaradze, V.: Aggregation of finite-size particles with variable mobility. Phys. Rev. Lett. 95(22), 226106 (2005)

    Article  Google Scholar 

  31. Kolokolnikov, T., Carrillo, J.A., Bertozzi, A., Fetecau, R., Lewis, M.: Emergent behaviour in multi-particle systems with non-local interactions. Physica D: Nonlin. Phenomen 260, 1–4 (2013)

    Article  MathSciNet  Google Scholar 

  32. Liu, H., Wang, Z.: An entropy satisfying discontinuous Galerkin method for nonlinear fokker-planck equations. J. Sci. Comput. 68, 1217–1240 (2016)

    Article  MathSciNet  Google Scholar 

  33. Liu, H., Wang, Z.: A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems. J. Comput. Phys. 328, 413–437 (2017)

    Article  MathSciNet  Google Scholar 

  34. Lushnikov, P.M., Chen, N., Alber, M.: Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78(6), 061904 (2008)

    Article  Google Scholar 

  35. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  Google Scholar 

  36. Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)

    Article  MathSciNet  Google Scholar 

  37. Saito, N.: Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)

    Article  MathSciNet  Google Scholar 

  38. Saito, N.: Conservative numerical schemes for the Keller-Segel system. RIMS Kôkyûroku 15, 125–146 (2009)

    MathSciNet  Google Scholar 

  39. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Commun. Pure Appl. Anal. 11(1), 339–364 (2011)

    Article  MathSciNet  Google Scholar 

  40. Saito, N., Suzuki, T.: A finite difference scheme to the system of self-interacting particles. RIMS Kôkyûroku 1320, 18–28 (2003)

    Google Scholar 

  41. Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl. Math. Comput. 171(1), 72–90 (2005)

    MathSciNet  Google Scholar 

  42. Sun, Z., Carrillo, J.A., Shu, C.: A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials. J. Comput. Phys. 352, 76–104 (2018)

    Article  MathSciNet  Google Scholar 

  43. Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  44. Toscani, G.: One-dimensional kinetic models of granular flows. ESAIM: Math. Model. Numer. Anal. 34(6), 1277–1291 (2000)

    Article  MathSciNet  Google Scholar 

  45. Varga, R.S.: Matrix iterative analysis. Springer, Berlin (1999)

    Google Scholar 

  46. Villani, C.: Topics in optimal transportation. American Mathematical Soc, USA (2021)

  47. Zhou, G.: An analysis on the finite volume schemes and the discrete Lyapunov inequalities for the chemotaxis system. J. Sci. Comput. 87(2), 1–47 (2021)

    Article  MathSciNet  Google Scholar 

  48. Zhou, G., Saito, N.: Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135(1), 265–311 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially supported by NSFC General Project No.12171071, and the Natural Science Foundation of Sichuan Province: No.2023NSFSC0055.

Proof of (64)

Proof of (64)

  1. (1)

    (Proof of the estimate (64) for \(E_{321}(\theta ^n)\)) In view of \(\tau _{ij} = \frac{| e^*_{ij} |}{ |\overrightarrow{p_i p_j}| }\), we see that \( \frac{\rho ^n_i + \rho ^n_j}{2} \tau _{ij} \big (H'(\rho ^n_j) - H'(\rho ^n_i) \big ) = \int _{e^*_{ij}} \frac{\rho ^n_i + \rho ^n_j}{2} \frac{H'(\rho ^n_j) - H'(\rho ^n_i)}{|\overrightarrow{p_i p_j}|} ~ds\). Now \(E_{321}(\theta ^n)\) becomes

    $$\begin{aligned} E_{321}(\theta ^n)= & {} \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big )\\{} & {} \bigg (\int _{e^*_{ij}} \Big (\rho ^n_h \nabla H'(\rho ^n_h) \cdot \varvec{n}_{ij} - \frac{\rho ^n_i + \rho ^n_j}{2} \frac{H'(\rho ^n_j) - H'(\rho ^n_i)}{|\overrightarrow{p_i p_j}|} \Big ) ~ds \bigg ) \\= & {} \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \bigg (\int _{e^*_{ij}} \nabla H'(\rho ^n_h) \cdot \varvec{n}_{ij} \Big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \Big ) ~ds \bigg )\\{} & {} + \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \\{} & {} \bigg (\int _{e^*_{ij}} \frac{\rho ^n_i + \rho ^n_j}{2} \Big (\nabla H'(\rho ^n_h) \cdot \varvec{n}_{ij} - \frac{H'(\rho ^n_j) - H'(\rho ^n_i)}{|\overrightarrow{p_i p_j}|} \Big ) ~ds \bigg ) \\=: & {} E_{3211}(\theta ^n) + E_{3212}(\theta ^n). \end{aligned}$$

    We set \(p^* = \frac{p_i + p_j}{2}\) (see Fig. 1(b)) and rewrite \(E_{3211}(\theta ^n)\) as

    $$\begin{aligned} E_{3211}(\theta ^n)= & {} \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij} } \Big (H''(\rho ^n_h) \nabla \rho ^n_h \cdot \varvec{n}_{ij} \\{} & {} - H''(\rho ^n_h(p^*)) \nabla \rho ^n_h(p^*) \cdot \varvec{n}_{ij} \Big ) \Big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \Big )~ds \\{} & {} + \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij}} H''(\rho ^n_h(p^*)) \nabla \rho ^n_h(p^*) \cdot \varvec{n}_{ij} \Big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \Big )~ds. \end{aligned}$$

    Since \(\rho ^n_h\) is a piecewise linear function, we have \(\nabla \rho ^n_h \cdot \varvec{n}_{ij} = \nabla \rho ^n_h(p^*) \cdot \varvec{n}_{ij}\) on \(e^*_{ij}\). Application of (28) enables us to write the first term of \(E_{3211}(\theta ^n)\) as

    $$\begin{aligned} \begin{aligned}&\bigg | \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \big ( \nabla \rho ^n_h \cdot \varvec{n}_{ij} \big ) \int _{e^*_{ij}} \Big (H''(\rho ^n_h) - H''(\rho ^n_h(p^*)) \Big ) \Big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \Big )~ds \bigg | \\&\quad \le C \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} \Vert \nabla \rho ^n_h \Vert _{L^{\infty }(T^*_i \cup T^*_j) } L h^{\frac{3}{2}} \Vert \rho ^n_h \Vert _{W^{1, 4}(T_i \cup T_j)} h^{\frac{1}{2}} \Vert \nabla \rho ^n_h \Vert _{L^{4}(T_i \cup T_j)} \\&\quad \le C h \Vert \nabla \theta ^n \Vert _{L^2} \Vert \nabla \rho ^n_h \Vert _{L^2} \Vert \rho ^n_h \Vert _{W^{1, 4}}^2 \le C h \Vert \nabla \theta ^n \Vert _{L^2}, \end{aligned} \end{aligned}$$
    (67)

    where the first inequality use the Lipschitz continuity of \(H''\) (see (25b)) and (50). The second one applies (51) and the Hölder inequality. \(\Vert \nabla \rho ^n_h \Vert _{L^2} \le C\) and the assumption \(\Vert \rho ^n_h \Vert _{W^{1, 4}} \le C\) lead to the last inequality. Furthermore, on account of (28), (51), (50), and the assumption \(H \in C^2({\mathbb {R}}^+)\) and \(\Vert \rho ^n_h \Vert _{W^{1,4}} \le C \), the second term of \(E_{3211}(\theta ^n)\) is calculated as follows

    $$\begin{aligned} \begin{aligned}&\bigg | \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \big (H''(\rho ^n_h(p^*)) \nabla \rho ^n_h(p^*) \cdot \varvec{n}_{ij} \big ) \int _{e^*_{ij}} \Big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \Big )~ds \bigg | \\&\quad \le C \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} \Vert H''(\rho ^n_h) \Vert _{L^{\infty }(T^*_i \cup T^*_j)} \Vert \nabla \rho ^n_h \Vert _{L^{\infty }(T^*_i \cup T^*_j)} h^{\frac{3}{2}} \Vert \rho ^n_h \Vert _{W^{1,4}(T_i \cup T_j)} \\&\quad \le C h \Vert H''(\rho ^n_h) \Vert _{L^{\infty }} \Vert \rho ^n_h \Vert _{W^{1,4}}^2 \Vert \nabla \theta ^n \Vert _{L^2} \le C h \Vert \nabla \theta ^n \Vert _{L^2}. \end{aligned} \end{aligned}$$
    (68)

    Combining (67) and (68), we assert that

    $$\begin{aligned} | E_{3211}(\theta ^n) | \le C h \Vert \nabla \theta ^n \Vert _{L^2}. \end{aligned}$$
    (69)

    We proceed to analyze \(E_{3212}(\theta ^n)\). We define two points \(\tilde{p}\) (on \(e^*_{ij}\)) and \(\bar{p}\) (on \(| \overrightarrow{p_i p_j} |\)) (see Fig. 1(b)) satisfying

    $$\begin{aligned} \begin{aligned}&\int _{e^*_{ij} } \nabla H'(\rho ^n_h) \cdot \varvec{n}_{ij} ~ds = |e^*_{ij}| \nabla H'(\rho ^n_h(\tilde{p})) \cdot \varvec{n}_{ij} = |e^*_{ij}| H''(\rho ^n_h(\tilde{p})) \nabla \rho ^n_h(\tilde{p}) \cdot \varvec{n}_{ij}, \\&\int _{e^*_{ij}} \frac{H'(\rho ^n_j) - H'(\rho ^n_i)}{|\overrightarrow{p_i p_j}|} ~ds = |e^*_{ij}| \nabla H'(\rho ^n_h(\bar{p})) \cdot \varvec{n}_{ij} = |e^*_{ij}| H''(\rho ^n_h(\bar{p})) \nabla \rho ^n_h(\bar{p}) \cdot \varvec{n}_{ij}, \end{aligned} \end{aligned}$$
    (70)

    and we see that \( \nabla \rho ^n_h(\tilde{p}) \cdot \varvec{n}_{ij} = \nabla \rho ^n_h(\bar{p}) \cdot \varvec{n}_{ij}\) because \(\rho ^n_h\) is a piecewise linear function. Then, substituting (70) into \(E_{3212}(\theta ^n)\), we see that

    $$\begin{aligned} \begin{aligned} | E_{3212}(\theta ^n) |&= \bigg | \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \frac{\rho ^n_i + \rho ^n_j}{2} |e^*_{ij}| \\&\quad \bigg ( H''(\rho ^n_h(\tilde{p})) \nabla \rho ^n_h(\tilde{p}) \cdot \varvec{n}_{ij} - H''(\rho ^n_h(\bar{p})) \nabla \rho ^n_h(\bar{p}) \cdot \varvec{n}_{ij} \bigg ) \bigg | \\&= \bigg | \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \frac{\rho ^n_i + \rho ^n_j}{2} |e^*_{ij}|\\&\quad \nabla \rho ^n_h(\tilde{p}) \cdot \varvec{n}_{ij} \big (H''(\rho ^n_h(\tilde{p})) - H''(\rho ^n_h(\bar{p})) \big ) \bigg | \\&\le C h \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} \Vert \rho ^n_h \Vert _{L^{\infty }(T^*_i \cup T^*_j)} \Vert \nabla \rho ^n_h \Vert _{L^{\infty }(T^*_i \cup T^*_j)} L h^{\frac{1}{2}} \Vert \nabla \rho ^n_h \Vert _{L^4(T_i \cup T_j)}\\&\le C h \Vert \nabla \theta ^n \Vert _{L^2} \Vert \rho ^n_h \Vert _{L^{\infty }} \Vert \nabla \rho ^n_h \Vert _{L^4}^2 \le C h \Vert \nabla \theta ^n \Vert _{L^2}, \end{aligned} \end{aligned}$$
    (71)

    where we used the assumptions \( \Vert \nabla \rho ^n_h \Vert _{L^4} \le C\) and \(\Vert \rho ^n_h \Vert _{L^{\infty }} \le C\), (28), the Hölder inequality, and the fact that \(|e^*_{ij}| \simeq h\). Therefore, (69) and (71) give the estimate of \( E_{321}(\theta ^n)\). \(\square \)

  2. (2)

    (Proof of the estimate (64) for \(E_{322}(\theta ^n)\)) The argument is similar to the estimate of \( E_{321}(\theta ^n)\). We recall that \(\frac{\rho ^n_i + \rho ^n_j}{2} \tau _{ij} (V_j - V_i) = \int _{e^*_{ij}} \frac{\rho ^n_i + \rho ^n_j}{2} \frac{V_j - V_i}{ |\overrightarrow{p_i p_j}|} ~ds \), and rewrite \( E_{322}(\theta ^n) \) as

    $$\begin{aligned} \begin{aligned} E_{322}(\theta ^n)&= \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij}} \Big (\rho ^n_h \nabla V \cdot \varvec{n}_{ij} - \frac{\rho ^n_i + \rho ^n_j}{2} \frac{V_j - V_i}{ |\overrightarrow{p_i p_j}|} \Big ) ~ds \\&= \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \Big [ \int _{e^*_{ij} } \nabla V \cdot \varvec{n}_{ij} \big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \big ) ~ds \\&\quad + \int _{e^*_{ij} } \frac{\rho ^n_i + \rho ^n_j}{2} \big (\nabla V \cdot \varvec{n}_{ij} - \frac{V_j - V_i}{ |\overrightarrow{p_i p_j}|} \big ) ~ds \Big ]\\&=: E_{3221}(\theta ^n) + E_{3222}(\theta ^n). \end{aligned} \end{aligned}$$

    By (50), the Hölder inequality and \(\Vert \rho ^n_h \Vert _{H^1} \le C\), it is obvious that

    $$\begin{aligned} | E_{3221}(\theta ^n) | \le C \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} \Vert \nabla V \Vert _{L^{\infty }(T^*_i \cup T^*_j)} h \Vert \rho ^n_h \Vert _{H^1(T_i \cup T_j)} \le C h \Vert \nabla \theta ^n \Vert _{L^2}. \end{aligned}$$

    There exist two points \(\tilde{p}\) (on \(e^*_{ij}\)) and \(\bar{p}\) (on \(| \overrightarrow{p_i p_j} |\)) (see Fig. 1(b)), such that

    $$\begin{aligned} \int _{e^*_{ij} } \nabla V \cdot \varvec{n}_{ij} ~ds = |e^*_{ij}| \nabla V(\tilde{p}) \cdot \varvec{n}_{ij}, \qquad \int _{e^*_{ij} } \frac{V_j - V_i}{|\overrightarrow{p_i p_j}|} ~ds = |e^*_{ij}| \nabla V(\bar{p}) \cdot \varvec{n}_{ij}. \qquad \end{aligned}$$
    (72)

    By assumption (25c), \(\Vert \rho ^n_h \Vert _{L^2} \le C\), and the fact that \(| \tilde{p} - \bar{p} | \le Ch\), we have

    $$\begin{aligned} \begin{aligned} |E_{3222}(\theta ^n)|&= \bigg | \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \frac{\rho ^n_i + \rho ^n_j}{2} |e^*_{ij}| \big (\nabla V(\tilde{p}) - \nabla V(\bar{p}) \big ) \cdot \varvec{n}_{ij} \bigg | \\&\le C \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} h \Big | \frac{\rho ^n_i + \rho ^n_j}{2} \Big | L | \tilde{p} - \bar{p} | \\&\le C h \Big (\sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i)}^2 \Big )^{\frac{1}{2}} \Big (\sum _{e^*_{ij} \in {\mathscr {E}}^*} h^2 \Big |\frac{\rho ^n_i + \rho ^n_j}{2}^2 \Big | \Big )^{\frac{1}{2}} \\&\le C h \Vert \nabla \theta ^n \Vert _{L^2} \Vert \rho ^n_h \Vert _{L^2} \le C h \Vert \nabla \theta ^n \Vert _{L^2}. \end{aligned} \end{aligned}$$

    According to the above estimates, we see that

    $$\begin{aligned} |E_{322}(\theta ^n)| \le C h \Vert \nabla \theta ^n \Vert _{L^2}. \end{aligned}$$
    (73)

    \(\square \)

  3. 3)

    (Proof of the estimate (64) for \( E_{322}(\theta ^n)\)) Our next objective is to evaluate \(E_{323}(\theta ^n)\). We begin by recalling the definition of discrete convolution (9) and convolution \( \nabla (W * \rho ^*_h) = \int _{\varOmega } \nabla W(x - x_2) \rho ^*_h(x_2) ~dx_2\). Substituting it into \(E_{323}(\theta ^n)\), we find that

    $$\begin{aligned} \begin{aligned} E_{323}(\theta ^n)&= \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \bigg [\int _{e^*_{ij}} \bigg ( \rho ^n_h \Big (\int _{\varOmega } \nabla W(x - x_2) \\&\quad \rho ^*_h(x_2) ~dx_2 \Big ) \cdot \varvec{n}_{ij} - \Big ( \frac{\rho ^n_i + \rho ^n_j}{2} \sum _{l = 1}^{N_p} \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} \rho ^*_l | T^*_l | \Big ) \bigg )~ds \bigg ] \\&= \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij} } \Big ( \int _{\varOmega } \nabla W(x - x_2) \rho ^*_h(x_2) ~dx_2 \Big ) \cdot \varvec{n}_{ij} \\&\quad \big (\rho ^n_h - \frac{\rho ^n_i + \rho ^n_j}{2} \Big )~ds + \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij} } \frac{\rho ^n_i + \rho ^n_j}{2} \bigg (\Big ( \int _{\varOmega } \nabla W(x - x_2) \\&\quad \rho ^*_h(x_2) ~dx_2 \Big ) \cdot \varvec{n}_{ij} - \sum _{l = 1}^{N_p} \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} \rho ^*_l | T^*_l | \bigg )~ds \\&\quad =: E_{3231}(\theta ^n) + E_{3232}(\theta ^n). \end{aligned} \end{aligned}$$

    By (50) and \(\Vert \rho ^n_h \Vert _{H^1} \le C\), the estimate of \( E_{3231}(\theta ^n)\) is straightforward

    $$\begin{aligned} \begin{aligned} |E_{3231}(\theta ^n)| \le C \Vert \nabla W \Vert _{L^{\infty }} \Vert \rho ^*_h \Vert _{L^{\infty }} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2({T_i \cup T_j})} h \Vert \rho ^n_h \Vert _{H^1({T_i \cup T_j})} \le C h \Vert \nabla \theta ^n \Vert _{L^2}. \end{aligned} \end{aligned}$$

    We split \(E_{3232}(\theta ^n)\) into two parts

    $$\begin{aligned} E_{3232}(\theta ^n)= & {} \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij}} \Bigg ( \frac{\rho ^n_i + \rho ^n_j}{2} \sum _{l = 1}^{N_p} \int _{T^*_l} \bigg ( \Big ( \nabla W(x - x_2) \\{} & {} \rho ^*_h(x_2) ~dx_2 \Big ) \cdot \varvec{n}_{ij} - \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} \rho ^*_l \bigg ) ~dx_2 \Bigg )~ds \\= & {} \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij}} \Bigg ( \frac{\rho ^n_i + \rho ^n_j}{2} \sum _{l = 1}^{N_p} \int _{T^*_l} \rho ^*_h(x_2) \Big ( \nabla W(x - x_2) \cdot \varvec{n}_{ij} \\{} & {} - \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} \Big ) ~dx_2 \Bigg ) ~ds + \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij}} \Bigg ( \frac{\rho ^n_i + \rho ^n_j}{2} \\{} & {} \sum _{l = 1}^{N_p} \int _{T^*_l} \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} \Big (\rho ^*_h(x_2) - \rho ^*_l \Big ) ~dx_2 \Bigg )~ds. \end{aligned}$$

    We note that \( \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} = \frac{W(x_j - x_l) - W(x_i - x_l)}{| \overrightarrow{p_i p_j} |} = \frac{1}{| \overrightarrow{p_i p_j} |} \int _{ \overrightarrow{p_i p_j} } \nabla W(x - x_l) \cdot \varvec{n}_{ij} ~ds \). Moreover, due to the Lipshitz continuity of \(\nabla W\) ( i.e., (24d)), we see that \(\big | \nabla W (x - x_2) - \nabla W (x - x_l) \big | \le L |x_2 - x_l| \le C h\). Then, by (28), (51), \(\Vert \rho ^i_n \Vert _{L^{\infty }} \le C\), \(\Vert \rho ^i_h \Vert _{H^{1}} \le C ~ (\forall i = 0, 1, \cdots , n)\), and under the assumption (H1), we rewrite \(E_{3232}(\theta ^n)\) and calculate as

    $$\begin{aligned} \begin{aligned} | E_{3232}(\theta ^n) |&= \Bigg | \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \int _{e^*_{ij}} \Bigg ( \frac{\rho ^n_i + \rho ^n_j}{2} \sum _{l = 1}^{N_p} \int _{T^*_l} \rho ^*_h(x_2) \\&\quad \bigg (\frac{1}{| \overrightarrow{p_i p_j} |} \int _{ \overrightarrow{p_i p_j} } \Big ( \nabla W(x - x_2) \\&\quad - \nabla W(x - x_l) \Big ) \cdot \varvec{n}_{ij} ~ds \bigg ) ~dx_2 \Bigg ) ~ds + \frac{1}{2} \sum _{e^*_{ij} \in {\mathscr {E}}^*} \big (\theta ^n(p_i) - \theta ^n(p_j) \big ) \\&\quad \int _{e^*_{ij}} \Bigg ( \frac{\rho ^n_i + \rho ^n_j}{2} \sum _{l = 1}^{N_p} \int _{T^*_l} \frac{W_{j - l} - W_{i - l}}{| \overrightarrow{p_i p_j} |} \Big (\rho ^*_h(x_2) - \rho ^*_l \Big ) ~dx_2 \Bigg )~ds \Bigg | \\&\le C \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} | e^*_{ij} | \Vert \rho ^n_h \Vert _{L^{\infty }(T^*_i \cup T^*_j)} \sum _{l = 1}^{N_p} | T^*_l | \Vert \rho ^*_h \Vert _{L^{\infty }(T^*_l)} L h \\&\quad + C \sum _{e^*_{ij} \in {\mathscr {E}}^*} \Vert \nabla \theta ^n \Vert _{L^2(T_i \cup T_j)} | e^*_{ij} | \Vert \rho ^n_h \Vert _{L^{\infty }(T^*_i \cup T^*_j)} \sum _{l = 1}^{N_p} | T^*_l | h \Vert \nabla W \Vert _{L^{\infty }(T_i \cup T_j)}\\&\quad \frac{1}{| \overrightarrow{p_i p_j} |} \Vert \nabla \rho ^*_h \Vert _{L^2(T_i \cup T_j)} \\&\le C h \Vert \nabla \theta ^n \Vert _{L^2} \Vert \rho ^n_h \Vert _{L^{2}} \Vert \rho ^*_h \Vert _{L^{\infty }} + C h \Vert \nabla \theta ^n \Vert _{L^2} \Vert \rho ^n_h \Vert _{L^{\infty }} \Vert \nabla W \Vert _{L^{\infty }} \Vert \nabla \rho ^*_h \Vert _{L^2} \\&\le C h \Vert \nabla \theta ^n \Vert _{L^2}, \end{aligned} \end{aligned}$$

    where we use \(| e^*_{ij} | \simeq h \), \( | \overrightarrow{p_i p_j} | \simeq h \), and \(\sum _{l = 1}^{N_p} | T^*_l | = | \varOmega | \le C\). Hence, we conclude (64). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, P., Zhou, G. Analysis of an Energy-Dissipating Finite Volume Scheme on Admissible Mesh for the Aggregation-Diffusion Equations. J Sci Comput 99, 55 (2024). https://doi.org/10.1007/s10915-024-02522-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02522-4

Keywords

Mathematics Subject Classification

Navigation