Skip to main content
Log in

Unified Analysis of Any Order Spectral Volume Methods for Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new class of spectral volume (SV) methods are proposed, analyzed, and implemented for diffusion equations, with the viscous flux taken as an interior penalty or direct discontinuous Galerkin formulation. The control volumes are constructed by using four kinds of special points (including Legendre–Gauss, Legendre–Gauss–Lobatto, right Legendre–Gauss–Radau and left Legendre–Gauss–Radau points) in subintervals of the underlying meshes, which leads to four different SV schemes. A framework for the stability analysis and error estimates of the four SV schemes is established. In particular, the influence of the choice of the parameters in the numerical fluxes on the convergence rate and the optimal choices of coefficients for each SV scheme are discussed and provided. Numerical experiments are presented to demonstrate the stability and accuracy of the four SV schemes for both linear and nonlinear diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. An, J., Cao, W.: Any order spectral volume methods for diffusion equations using the local discontinuous Galerkin formulation. Math. Model. Numer. Anal. 57, 367–394 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, W., Zou, Q.: Analysis of spectral volume methods for 1D linear scalar hyperbolic equations. J. Sci. Comput. 90, 1 (2022). https://doi.org/10.1007/s10915-021-01715-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Kanschat, G., Schotzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws, II : General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws, V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Karniadakis, G., Shu, C.-W.: The Development of Discontinuous Galerkin Methods. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  10. Cozzolino, L., Della Morte, R., Del Giudice, G.: A well-balanced spectral volume scheme with the wetting drying property for the shallow-water equations. J. Hydroinform. 14, 745–760 (2012)

    Article  Google Scholar 

  11. Godunov, S.K.: A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Huynh, H.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper, 2007-4079 (2007)

  13. Huynh, H.: A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper, 2009-403 2009

  14. Huynh, H.: High-order methods including discontinuous Galerkin by reconstructions on triangular meshes. AIAA Paper, 2011-44 (2011)

  15. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kannan, P., Wang, Z.: A study of viscous flux formulations for a p-multigrid spectral volume Navier Stokes solver. J. Sci. Comput. 41, 165–199 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kannan, R., Wang, Z.J.: LDG2: a variant of the LDG flux formulation for the spectral volume method. J. Sci. Comput. 46, 314–328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kannan, R., Wang, Z.J.: The direct discontinuous Galerkin (DDG) viscous flux scheme for the high order spectral volume method. Comput. Fluids 39, 2007–2021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kannan, R.: A high order spectral volume formulation for solving equations containing higher spatial derivative terms: formulation and analysis for third derivative spatial terms using the LDG discretization procedure. Commun. Comput. Phys. 10, 1257–1279 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Y., Vinokur, M., Wang, Z.: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J. Comput. Phys. 212, 454–472 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raghavendra, R.: A high order spectral volume method for equations containing third spatial derivatives using an Interior Penalty formulation. CFD Lett. 3, 74–88 (2011)

    Google Scholar 

  24. Sun, Y., Wang, Z., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, Y., Wang, Z., Liu, Y.: High-order multidomain spectral difference method for the Navier–Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2, 310–333 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Van den Abeele, K., Lacor, C., Wang, Z.: On the connection between the spectral volume method and the spectral difference method. IV. Extension to two-dimensional systems. J. Comput. Phys. 227, 877–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z.: Spectral (finite) volume method for conservation laws on unstructured grids. Basic formulation. J. Comput. Phys. 178, 210–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Z., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation. J. Comput. Phys. 179, 665–697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Z., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional systems and partition optimization. J. Sci. Comput. 20, 137–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Zhang, L., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids. IV. Extension to two-dimensional systems. J. Comput. Phys. 194, 716–741 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, J.: A new nonsymmetric discontinuous Galerkin method for time dependent convection diffusion equations. J. Sci. Comput. 54, 663–683 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Q., Wu, Z.: Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38, 127–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China under Grant 12271049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waixiang Cao.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 3.1

We begin with some preliminaries.

First, for any function \(w\in U_h\), let \(w^*={{\mathcal {F}}}w\) be defined in (3.4) with the coefficients given by (3.5). Then a direct calculation from (3.5) yields

$$\begin{aligned} \begin{aligned}&[w^{\tau ,*}_{k,j}]^y=A_j^{\tau ,y} \big (w_y-A_{k+1}^{\tau ,x}w_{xy}\big )(g_{k+1,j}^{\tau }),&\\&[w^{\tau ,*}_{i,k}]^x =A_i^{\tau ,x}\big (w_x- A_{k+1}^{\tau ,y}w_{xy}\big )(g_{i,k+1}^{\tau }),&\\&w^{\tau ,*}_{0,k}=\big (w+A_0^{\tau ,x}w_x-A_{k+1}^{\tau ,y}w_y-A_{0,k+1}^\tau w_{xy}\big )(g_{0,k+1}^{\tau }),&\\&w^{\tau ,*}_{k,0}=\big (w+A_0^{\tau ,y}w_y-A_{k+1}^{\tau ,x}w_x-A_{k+1,0}^\tau w_{xy}\big )(g_{k+1,0}^{\tau }),&\\&w^{\tau ,*}_{k,k}=\big (w-A_{k+1}^{\tau ,x}w_x-A_{k+1}^{\tau ,y}w_y+A_{k+1,k+1}^{\tau }w_{xy}\big )(g_{k+1,k+1}^{\tau }).&\end{aligned} \end{aligned}$$
(7.1)

Second, denoting

$$\begin{aligned}{} & {} E_1(v,w)=A_{0}^{\tau ,x}\big (\int _{g_0^{\tau ,y}}^{g_{k+1}^{\tau ,y}} (w_xv)(g_0^{\tau ,x},y)dy+ R_\tau ^y(w_{xy}\partial _y^{-1}v)(g^{\tau ,x}_0)\big ),\\{} & {} E_2(v,w)=A_{k+1}^{\tau ,x}\big (\int _{g_0^{\tau ,y}}^{g_{k+1}^{\tau ,y}} (w_xv)(g_{k+1}^{\tau ,x},y)dy+ R_\tau ^y(w_{xy}\partial _y^{-1}v)(g^{\tau ,x}_{k+1})\big ). \end{aligned}$$

Recalling the definition of \(\langle ,\rangle _{\partial \tau _y}\) in (3.8), we have

$$\begin{aligned} \langle v,w^*\rangle _{\partial \tau _y}=\sum _{j=0}^{k} w_{k,j}^{\tau ,*} \int _{g_j^{\tau ,y}}^{g_{j+1}^{\tau ,y}} v(g_{k+1}^{\tau ,x},y)dy-\sum _{j=0}^{k} w_{0,j}^{\tau ,*} \int _{g_j^{\tau ,y}}^{g_{j+1}^{\tau ,y}} v(g_{0}^{\tau ,x},y)dy:=I_2-I_1. \end{aligned}$$

Then a direct calculation from (3.5) and (7.1) leads to

$$\begin{aligned} I_1= & {} -\sum _{j=1}^{k} [w^{\tau ,*}_{0,j}]^y \partial _y^{-1}v(g_0^{\tau ,x},g_j^{\tau ,y})+w_{0,k}^{\tau ,*}\partial _y^{-1}v(g_0^{\tau ,x},g_{k+1}^{\tau ,y})-w_{0,0}^{\tau ,*}\partial _y^{-1}v(g_0^{\tau ,x},g_{0}^{\tau ,y})\\= & {} -\sum _{j=0}^{k+1}\left( (A_j^{\tau ,y}w_y+A_{0,j}^\tau w_{xy})\partial _y^{-1}v\right) (g_{0,j}^{\tau })+(w\partial _y^{-1}v)|_{g_{0,0}^{\tau }}^{g_{0,k+1}^{\tau }}+A_0^{\tau ,x}(w_x\partial _y^{-1}v)|^{g_{0,k+1}^\tau }_{g_{0,0}^\tau }. \end{aligned}$$

By using (3.2)–(3.3) and the integration by parts,

$$\begin{aligned} I_1=\int _{g_0^{\tau ,y}}^{g_{k+1}^{\tau ,y}} (wv)(g_0^{\tau ,x},y)dy +R_\tau ^y(w_y\partial _y^{-1}v)(g^{\tau ,x}_0)+E_1(v,w). \end{aligned}$$

Following the same argument, we can prove that

$$\begin{aligned} I_2=\int _{g_0^{\tau ,y}}^{g_{k+1}^{\tau ,y}} (wv)(g_{k+1}^{\tau ,x},y)dy +R_\tau ^y(w_y\partial _y^{-1}v)(g^{\tau ,x}_{k+1})-E_2(v,w). \end{aligned}$$

Consequently,

$$\begin{aligned} \langle v,w^*\rangle _{\partial \tau _y} = \langle v,w\rangle _{\partial \tau _y} +R_\tau ^y(w_y\partial _y^{-1}v)|_{g^{\tau ,x}_0}^{g^{\tau ,x}_{k+1}}-E_{2}(v,w)-E_1(v,w). \end{aligned}$$
(7.2)

Now we are ready to prove Lemma 3.1.

Proof

Denoting \(I=(({\widehat{\alpha v_x}})_x, w^*)_\tau \). In light of (7.2), we have for all \(\tau =\tau _m^x\times \tau _n^y\) that

$$\begin{aligned} I= & {} ( (\alpha v_{x})_x, w^*)_\tau + \langle {\widehat{\alpha v_x}}-\alpha v_x,w^*\rangle _{\partial \tau _y}\\= & {} ( (\alpha v_{x})_x, w^*)_\tau +\langle {\widehat{\alpha v_x}}-\alpha v_x,w\rangle _{\partial \tau _y}+R_\tau ^y(w_y\partial _y^{-1} (\widehat{\alpha v_x}-\alpha v_x))|_{g^{\tau ,x}_0}^{g^{\tau ,x}_{k+1}}\\{} & {} -(E_2+E_1)(\widehat{\alpha v_x}-\alpha v_x, w). \end{aligned}$$

Using (3.6) and the integration by parts yields

$$\begin{aligned} I= & {} -( \alpha v_{x}, w_x)_\tau +\langle \widehat{\alpha v_x},w\rangle _{\partial \tau _y}+ {{\mathcal {E}}}_{\tau }^1( (\alpha v_{x})_x,w)+R_\tau ^y(w_y\partial _y^{-1} (\widehat{\alpha v_x}-\alpha v_x))|_{g^{\tau ,x}_0}^{g^{\tau ,x}_{k+1}}\\{} & {} -(E_2+E_1)(\widehat{\alpha v_x}-\alpha v_x, w). \end{aligned}$$

Then (3.9) follows by summing up all \(\tau \) and using the following equation

$$\begin{aligned} (\alpha v_{x}, w_x)_\tau =\int _{\tau _n^y}\left( \sum _{i=0}^{k+1}A_{i}^{\tau ,x}\alpha v_xw_x(g_{i}^{\tau ,x},y)+R_{\tau }^x(\alpha v_xw_x)(y)\right) dy. \end{aligned}$$

Using the fact the \(k+2\) Gauss–Lobatto and \(k+1\) left and right Radau numerical quadrature is exact for polynomials of degree not more than 2k, we easily get

$$\begin{aligned} {\mathcal {E}}^1_{\tau }(v_{xx},v)+{\mathcal {E}}^2_{\tau }(v,v)=0,\ \ \forall v\in U_h, \end{aligned}$$

and thus (3.11) holds true for GLSV, RRSV and LRSV. As for GSV, by using the weight and error of Gauss numerical quadrature in Table 1, we have for all \(\tau =\tau ^x_m\times \tau ^y_n\in {{\mathcal {T}}}_h\)

$$\begin{aligned}{} & {} {\mathcal {E}}^1_{\tau }(v_{xx},w)=\int _{\tau _m^x}R^y_\tau (w_{y}\partial _y^{-1}v_{xx})dx=-\int _{\tau _m^x}R^y_\tau (w_{yx}\partial _y^{-1}v_{x})dx+R^y_\tau (w_{y}\partial _y^{-1}v_{x})|_{x_{m-\frac{1}{2}}}^{x_{m+\frac{1}{2}}}, \\{} & {} {\mathcal {E}}^2_{\tau }(v,w)=R^y_\tau (w_{y}\partial _y^{-1}(\widehat{v_x}-v_{x}))|_{x_{m-\frac{1}{2}}}^{x_{m+\frac{1}{2}}}. \end{aligned}$$

Consequently, we use the error of Gauss numerical quadrature in Table 1 to derive

$$\begin{aligned} {\mathcal {E}}^1_{\tau }(v_{xx},w)+{\mathcal {E}}^2_{\tau }(v,w)= & {} -\int _{\tau _m^x}R^y_\tau (w_{yx}\partial _y^{-1}v_{x})dx+R^y_\tau (w_{y}\partial _y^{-1}\widehat{v_x})|_{x_{m-\frac{1}{2}}}^{x_{m+\frac{1}{2}}}\\= & {} -c_kh^{2k+1}\left( \int _{\tau _m^x} (\partial _y^kv_{x}\partial _y^{k}v_{x})(x,\eta _n)dx- \partial _y^{k}v\partial _y^{k}\widehat{v_x}|_{(x_{m-\frac{1}{2}},\eta _n)}^{(x_{m+\frac{1}{2}},\eta _n)}\right) \\= & {} -c_kh^{2k} \left( (\partial _y^kv_x,\partial _y^k v_x)_{\tau }-\langle \partial _y^{k}{{\widehat{v}}}_{x}, \partial _y^{k} v\rangle _{\partial \tau _y}\right) , \end{aligned}$$

where \(c_k\) is a constant only dependent on k, and \(\eta _n\in (y_{n-\frac{1}{2}}, y_{n+\frac{1}{2}})\) is an arbitrary point, and in the last step, we have used the fact that \(\partial _y^k v\) for any \(v\in U_h\) is a constant function about y. By denoting \(\zeta =c_k^{\frac{1}{2}}h^k\partial _y^kv\), we easily obtain

$$\begin{aligned} {\mathcal {E}}^1_{\tau }(v_{xx},v)+{\mathcal {E}}^2_{\tau }(v,v)=-(\zeta _x,\zeta _x)_{\tau }+\langle {{\widehat{\zeta }}}_x,\zeta \rangle _{\partial \tau _y}. \end{aligned}$$

This finishes the proof of (3.11). \(\square \)

1.2 Proof of Lemma 3.2

Proof

First, for all \(v\in {\mathbb {P}}_{k-1}([-1,1])\), suppose

$$\begin{aligned} v(s)=\sum _{i=0}^{k-1} \sqrt{\frac{2i+1}{2}}a_iL_i(s),\ \ s\in [-1,1]. \end{aligned}$$

Then a direct calculation yields

$$\begin{aligned} v(1)=\sum _{i=0}^{k-1}a_i\sqrt{\frac{2i+1}{2}},\ \ \partial _sv(1)=\sum _{i=0}^{k-1}a_i\sqrt{\frac{2i+1}{2}} \frac{i(i+1)}{2},\ \ \Vert v\Vert ^2_{0,[-1,1]}=\sum _{i=0}^{k-1}|a_i|^2. \end{aligned}$$

Using the Cauchy-Schwarz inequality, we get

$$\begin{aligned} (\gamma v(1)-4\beta _1\partial _sv(1))^2\le & {} \sum _{i=0}^{k-1} a_i^2\sum _{i=0}^{k-1}\frac{2i+1}{2}(\gamma -2\beta _1 i (i+1))^2 \\= & {} \frac{k^2}{2}(\gamma ^2-\beta _1\gamma (k^2-1)+\frac{\beta _1^2}{3}(k^2-1)^2)\Vert v\Vert ^2_{0,[-1,1]}. \end{aligned}$$

Then the first equation of (3.14) follows.

We next estimate \(\Gamma _2\). For any \(\theta \in {\mathbb {P}}_{k-1}\), let

$$\begin{aligned} \theta (s)=\sum _{i=1}^k c_iL_{i-1}(s),\ \ \textbf{c}:=\textbf{c}_k=(c_1,\ldots ,c_k)^T. \end{aligned}$$

Then a direct calculation yields

$$\begin{aligned} |\theta (1)|^2=\textbf{c}^T A\textbf{c},\ \ |\theta (-1)|^2=\textbf{c}^T B\textbf{c} \end{aligned}$$

with

$$\begin{aligned} A=a^Ta, \ B=b^Tb, \ a=(1,1,\ldots , 1)^T,\ b=(1,-1,\ldots , (-1)^{k-1})^T. \end{aligned}$$

Consequently,

$$\begin{aligned} I_k:=|\theta (1)|^2+|\theta (-1)|^2=\textbf{c}^T (A+B)\textbf{c}=\textbf{c}^T M_k\textbf{c}, \end{aligned}$$

where

$$\begin{aligned} M_k=\left( \begin{array}{ccccc} 2&{} 0&{} 2&{} \cdots &{} 1+(-1)^{k-1} \\ 0 &{} 2&{} 0&{} \cdots &{} 1+(-1)^{k}\\ \cdots &{}\cdots &{} \cdots &{} \cdots \\ 1+(-1)^{k-1}&{}1+(-1)^k&{} 1+(-1)^{k+1}&{}\cdots &{} 2 \end{array} \right) . \end{aligned}$$

By using the method of mathematical induction, we can obtain that

$$\begin{aligned} I_k\le \frac{(k+1)^2}{2}\sum _{i=1}^{k}\frac{2}{2i-1}c_i^2= \frac{(k+1)^2}{2}\Vert \theta \Vert _0^2, \end{aligned}$$

which yields the second equation of (3.14). The proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W. Unified Analysis of Any Order Spectral Volume Methods for Diffusion Equations. J Sci Comput 96, 90 (2023). https://doi.org/10.1007/s10915-023-02309-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02309-z

Keywords

Mathematics Subject Classification

Navigation