Skip to main content
Log in

Optimal Error Estimates of the Penalty Finite Element Method for the Unsteady Navier–Stokes Equations with Nonsmooth Initial Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, both semi-discrete and fully discrete finite element methods are analyzed for the penalized two-dimensional unsteady Navier–Stokes equations with nonsmooth initial data. First order backward Euler method is applied for the time discretization, whereas conforming finite element method is used for the spatial discretization. Optimal \(L^2\) error estimates for the semi-discrete as well as the fully discrete approximations of the velocity and of the pressure are derived for realistically assumed conditions on the data. The main ingredient in the proof is the appropriate exploitation of the inverse of the penalized Stokes operator, negative norm estimates and time weighted estimates. Two numerical examples one in 2D and one in 3D are presented whose results are conforming our theoretical findings. Finally, computational experiments on benchmark problem: one on lid driven cavity problem and other on flow around a cylinder with low viscosity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. An, R.: Iteration penalty method for the incompressible Navier–Stokes equations with variable density based on the artificial compressible method. Adv. Comput. Math. 46(1), 5–29 (2020). https://doi.org/10.1007/s10444-020-09757-3

    Article  MathSciNet  Google Scholar 

  2. An, R., Li, Y.: Two-level penalty finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions. Int. J. Numer. Anal. Model. 11(3), 608–623 (2014)

    MathSciNet  Google Scholar 

  3. An, R., Shi, F.: Two-level iteration penalty methods for the incompressible flows. Appl. Math. Model. 39(2), 630–641 (2015). https://doi.org/10.1016/j.apm.2014.06.014

    Article  MathSciNet  Google Scholar 

  4. Brefort, B., Ghidaglia, J.M., Temam, R.: Attractors for the penalized Navier–Stokes equations. SIAM J. Math. Anal. 19(1), 1–21 (1988). https://doi.org/10.1137/0519001

    Article  MathSciNet  Google Scholar 

  5. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943). https://doi.org/10.1090/S0002-9904-1943-07818-4

    Article  MathSciNet  Google Scholar 

  6. Dai, X., Tang, P., Wu, M.: Analysis of an iterative penalty method for Navier–Stokes equations with nonlinear slip boundary conditions. Int. J. Numer. Methods Fluids 72(4), 403–413 (2013). https://doi.org/10.1002/fld.3742

    Article  MathSciNet  Google Scholar 

  7. de Frutos, J., García-Archilla, B., Novo, J.: Fully discrete approximations to the time-dependent Navier–Stokes equations with a projection method in time and grad-div stabilization. J. Sci. Comput. 80(2), 1330–1368 (2019). https://doi.org/10.1007/s10915-019-00980-9

    Article  MathSciNet  Google Scholar 

  8. Ghia, U., Ghia, K.N., Shin, C.: High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Article  Google Scholar 

  9. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations, vol. 749. Springer, Berlin (1979)

    Book  Google Scholar 

  10. Goswami, D., Damázio, P.D.: A two-grid finite element method for time-dependent incompressible Navier–Stokes equations with non-smooth initial data. Numer. Math. Theory Methods Appl. 8(4), 549–581 (2015). https://doi.org/10.4208/nmtma.2015.m1414

    Article  MathSciNet  Google Scholar 

  11. Hausenblas, E., Randrianasolo, T.A.: Time-discretization of stochastic 2-D Navier–Stokes equations with a penalty-projection method. Numer. Math. 143(2), 339–378 (2019). https://doi.org/10.1007/s00211-019-01057-3

    Article  MathSciNet  Google Scholar 

  12. He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes equations. Math. Comput. 74(251), 1201–1216 (2005). https://doi.org/10.1090/S0025-5718-05-01751-5

    Article  MathSciNet  Google Scholar 

  13. He, Y., Li, J.: A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier–Stokes equations. J. Comput. Appl. Math. 235(3), 708–725 (2010). https://doi.org/10.1016/j.cam.2010.06.025

    Article  MathSciNet  Google Scholar 

  14. He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier–Stoke equations. Int. J. Inf. Syst. Sci. 2(1), 131–143 (2006)

    MathSciNet  Google Scholar 

  15. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012). https://doi.org/10.1515/jnum-2012-0013

    Article  MathSciNet  Google Scholar 

  16. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982). https://doi.org/10.1137/0719018

    Article  MathSciNet  Google Scholar 

  17. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988). https://doi.org/10.1137/0725032

    Article  MathSciNet  Google Scholar 

  18. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990). https://doi.org/10.1137/0727022

    Article  MathSciNet  Google Scholar 

  19. Huang, P.: Iterative methods in penalty finite element discretizations for the steady Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 30(1), 74–94 (2014). https://doi.org/10.1002/num.21795

    Article  MathSciNet  Google Scholar 

  20. Huang, P., He, Y., Feng, X.: Convergence and stability of two-level penalty mixed finite element method for stationary Navier–Stokes equations. Front. Math. China 8(4), 837–854 (2013). https://doi.org/10.1007/s11464-013-0257-2

    Article  MathSciNet  Google Scholar 

  21. John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44(7), 777–788 (2004)

    Article  Google Scholar 

  22. Li, Y., An, R.: Penalty finite element method for Navier–Stokes equations with nonlinear slip boundary conditions. Int. J. Numer. Methods Fluids 69(3), 550–566 (2012). https://doi.org/10.1002/fld.2574

    Article  MathSciNet  Google Scholar 

  23. Li, Y., An, R.: Two-level iteration penalty methods for the Navier–Stokes equations with friction boundary conditions. Abstr. Appl. Anal. 17, 125139 (2013). https://doi.org/10.1155/2013/125139

    Article  MathSciNet  Google Scholar 

  24. Lu, X., Lin, P.: Error estimate of the \(P_1\) nonconforming finite element method for the penalized unsteady Navier–Stokes equations. Numer. Math. 115(2), 261–287 (2010). https://doi.org/10.1007/s00211-009-0277-8

    Article  MathSciNet  Google Scholar 

  25. Qiu, H., Zhang, Y., Mei, L., Xue, C.: A penalty-FEM for Navier–Stokes type variational inequality with nonlinear damping term. Numer. Methods Partial Differ. Equ. 33(3), 918–940 (2017). https://doi.org/10.1002/num.22130

    Article  MathSciNet  Google Scholar 

  26. Shen, J.: Long time stability and convergence for fully discrete nonlinear Galerkin methods. Appl. Anal. 38(4), 201–229 (1990). https://doi.org/10.1080/00036819008839963

    Article  MathSciNet  Google Scholar 

  27. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992). https://doi.org/10.1137/0729004

    Article  MathSciNet  Google Scholar 

  28. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62(1), 49–73 (1992). https://doi.org/10.1007/BF01396220

    Article  MathSciNet  Google Scholar 

  29. Shen, J.: On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 32(2), 386–403 (1995). https://doi.org/10.1137/0732016

    Article  MathSciNet  Google Scholar 

  30. Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115–152 (1968)

    Article  MathSciNet  Google Scholar 

  31. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)

    Google Scholar 

  32. Zhou, G., Kashiwabara, T., Oikawa, I.: Penalty method for the stationary Navier–Stokes problems under the slip boundary condition. J. Sci. Comput. 68(1), 339–374 (2016). https://doi.org/10.1007/s10915-015-0142-0

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors would like to thank honourable referees for their valuable suggestions. The first author would like to express his gratitude to the Department of Science and Technology (DST), Government of India, for the financial support (DST/INSPIRE Fellowship/IF170401).

Funding

The first author acknowledges financial support of the DST/INSPIRE Fellowship/IF170401 of the Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Pani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author would like to express his gratitude to the Department of Science and Technology (DST), Government of India, for the financial support (DST/INSPIRE Fellowship/IF170401). Moreover, he acknowledges the financial support through Institute PDF scheme of IIT Bombay.

Appendix

Appendix

Proof of the Lemma 5

Choose \(\phi ={\textbf{u}}_\varepsilon \) in (8) and use the Cauchy–Schwarz inequality and the Poincaré inequality with Lemma 3 (\(\Vert {\textbf{u}}_\varepsilon \Vert ^2 \le \frac{1}{\lambda _1}\Vert \nabla {\textbf{u}}_\varepsilon \Vert ^2\le \frac{c_0^2}{\lambda _1}\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2\)) to find that

$$\begin{aligned} \frac{d}{dt}\Vert {\textbf{u}}_\varepsilon \Vert ^2 + \nu \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2 \le \frac{c_0^2}{\nu \lambda _1}\Vert \textbf{f}\Vert ^2. \end{aligned}$$
(109)

Note that the non-linear term vanishes due to (7). Now multiply by \(e^{2\alpha t}\) and integrate from 0 to t to obtain

$$\begin{aligned} e^{2\alpha t}\Vert {\textbf{u}}_\varepsilon (t)\Vert ^2+(\nu -\frac{2c_0^2\alpha }{\lambda _1})\int _0^t e^{2\alpha s}\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon (s)\Vert ^2ds \le \Vert \textbf{u}_{\varepsilon 0}\Vert ^2+\frac{c_0^2(e^{2\alpha t}-1)}{2\alpha \nu \lambda _1}\Vert \textbf{f}\Vert ^2_{\infty }. \end{aligned}$$
(110)

With \(0< \alpha < \frac{\nu \lambda _1}{2c_0^2}\), we have \((\nu -\frac{2c_0^2\alpha }{\lambda _1})>0\). Multiply through out by \(e^{-2\alpha t}\) to conclude the first proof. Now, we integrate (109) with respect to time from t to \(t+T\) for any \(T>0\), we have

$$\begin{aligned} \Vert {\textbf{u}}_\varepsilon (t+T)\Vert ^2+\nu \int _t^{t+T} \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon (s)\Vert ^2ds \le \Vert {\textbf{u}}_\varepsilon (t)\Vert ^2 + \frac{c_0^2T}{\nu \lambda _1}\Vert \textbf{f}\Vert ^2_{\infty }. \end{aligned}$$
(111)

For the second estimate, choose \(\phi =A_{\varepsilon }^{m+1}{\textbf{u}}_\varepsilon \) in (8). When \(m=0\), we find that

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2 +\nu \Vert A_{\varepsilon }{\textbf{u}}_\varepsilon \Vert ^2 = (\textbf{f},A_{\varepsilon }{\textbf{u}}_\varepsilon ) -\tilde{b}({\textbf{u}}_\varepsilon ,{\textbf{u}}_\varepsilon ,A_{\varepsilon }{\textbf{u}}_\varepsilon ). \end{aligned}$$
(112)

A use of Ladyzhenskaya’s inequality [31] (\(\Vert \phi \Vert _{L^4} \le C \Vert \phi \Vert ^{\frac{1}{2}}\Vert \nabla \phi \Vert ^{\frac{1}{2}}\), and \(\Vert \nabla \phi \Vert _{L^4} \le C \Vert \nabla \phi \Vert ^{\frac{1}{2}}\Vert \varDelta \phi \Vert ^{\frac{1}{2}}\)) with Lemma 3, the Young’s inequalities, we bound the nonlinear term as

$$\begin{aligned} \tilde{b}({\textbf{u}}_\varepsilon ,{\textbf{u}}_\varepsilon ,A_{\varepsilon }{\textbf{u}}_\varepsilon )&\le \Vert {\textbf{u}}_\varepsilon \Vert _{L^4}\Vert \nabla {\textbf{u}}_\varepsilon \Vert _{L^4} \Vert A_{\varepsilon }{\textbf{u}}_\varepsilon \Vert \nonumber \\&\le C \Vert {\textbf{u}}_\varepsilon \Vert ^{\frac{1}{2}}\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert \Vert A_{\varepsilon }{\textbf{u}}_\varepsilon \Vert ^{3/2} \nonumber \\&\le C \Vert {\textbf{u}}_\varepsilon \Vert ^2\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^4 + \frac{\nu }{4}\Vert A_{\varepsilon }{\textbf{u}}_\varepsilon \Vert ^2. \end{aligned}$$
(113)

Substitute the above estimate in (112) to find that

$$\begin{aligned} \frac{d}{dt} (\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2) +\nu \Vert A_{\varepsilon }{\textbf{u}}_\varepsilon \Vert ^2 \le C \big (\Vert {\textbf{u}}_\varepsilon \Vert ^2\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2\big ) \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2 + \frac{2}{\nu }\Vert \textbf{f}\Vert ^2). \end{aligned}$$
(114)

We now apply uniform Gronwall’s Lemma (Lemma 1) in (114) and use (110) and (111) to conclude that \(\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon (t)\Vert ^2\) is uniformly bounded with respect to t on \([T,\infty )\). Precisely

$$\begin{aligned} \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon (t)\Vert ^2 \le C, \quad \forall t\ge T. \end{aligned}$$
(115)

For \(0\le t\le T\), we use the classical Gronwall’s lemma [18, 26] in (114) and obtain

$$\begin{aligned} \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon (t)\Vert ^2 \le C, \quad \text {for}~~ 0\le t\le T. \end{aligned}$$
(116)

Finally, multiply (114) by \(e^{2\alpha t}\) and integrate with respect to time from 0 to t and use the estimates (110), (115) and (116) to complete the second proof when \(r=0\). For \(r=1\), we need some intermediate estimate. First we take \(\phi =e^{2\alpha t}{\textbf{u}}_{\varepsilon t}\) with \(\hat{\textbf{u}}_\varepsilon =e^{\alpha t}{\textbf{u}}_\varepsilon \) in (8) to obtain

$$\begin{aligned} \frac{\nu }{2}\frac{d}{dt} \Vert A_{\varepsilon }^{\frac{1}{2}}\hat{\textbf{u}}_\varepsilon \Vert ^2+ \Vert \hat{\textbf{u}}_{\varepsilon t}\Vert ^2= \alpha \nu \Vert A_{\varepsilon h}^{\frac{1}{2}}\hat{\textbf{u}}_\varepsilon \Vert ^2 + (\hat{\textbf{f}},{\textbf{u}}_{\varepsilon t}) -e^{2\alpha t}\tilde{b}({\textbf{u}}_\varepsilon ,{\textbf{u}}_\varepsilon ,{\textbf{u}}_{\varepsilon t}). \end{aligned}$$
(117)

We can estimate the nonlinear term on the right hand side of (117) similar to (113) and integrate both sides with respect to time to find that

$$\begin{aligned} \nu \Vert A_{\varepsilon }^{\frac{1}{2}}\hat{\textbf{u}}_\varepsilon \Vert ^2 + \int _0^t\Vert \hat{\textbf{u}}_{\varepsilon t}\Vert ^2 ds \le C \bigg [\int _0^t \Big (\Vert A_{\varepsilon }^{\frac{1}{2}}\hat{\textbf{u}}_\varepsilon \Vert ^2 + \Vert \hat{\textbf{f}}\Vert ^2+ \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2\Vert A_{\varepsilon }\hat{\textbf{u}}_\varepsilon \Vert ^2 \big ) ds\bigg ]. \end{aligned}$$

Now a use of (110) and (115) lead us to the intermediate estimate.

$$\begin{aligned} \Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon (t)\Vert ^2 + e^{-2\alpha t}\int _0^t e^{2\alpha s}\Vert {\textbf{u}}_{\varepsilon s}(s)\Vert ^2 ds \le C. \end{aligned}$$
(118)

We now differentiate (8) with respect to time and deduce that

$$\begin{aligned} ({\textbf{u}}_{\varepsilon tt},\phi )+\nu a_{\varepsilon }({\textbf{u}}_{\varepsilon t},\phi ) = (\textbf{f}_t,\phi ) -\tilde{b}({\textbf{u}}_{\varepsilon t},{\textbf{u}}_\varepsilon ,\phi )-\tilde{b}({\textbf{u}}_\varepsilon ,{\textbf{u}}_{\varepsilon t},\phi ), \quad \forall \phi \in \textbf{H}_0^1. \end{aligned}$$
(119)

Take \(\phi =\sigma (t){\textbf{u}}_{\varepsilon tt}\) in (119) and use Lemma 6, the Cauchy–Schwarz inequality to reach at

$$\begin{aligned} \frac{d}{dt}(\sigma (t)\Vert {\textbf{u}}_{\varepsilon t}\Vert ^2) + \nu \sigma (t)\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_{\varepsilon t}\Vert ^2 \le C e^{2\alpha t}\Vert {\textbf{u}}_{\varepsilon t}\Vert ^2 +C\sigma (t)\Big (\Vert \textbf{f}_t\Vert ^2+ \Vert {\textbf{u}}_{\varepsilon t}\Vert ^2\Vert A_{\varepsilon h}^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^2\Big ). \end{aligned}$$

Integrate with respect to time and use (118), (115) and (116) to obtain

$$\begin{aligned} \tau (t)\Vert {\textbf{u}}_{\varepsilon t}(t)\Vert ^2 + \nu e^{-2\alpha t}\int _0^t \sigma (s)\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_{\varepsilon s}(s)\Vert ^2 ds \le C. \end{aligned}$$
(120)

Now we are in position to complete the proof of the second estimate when \(m=1\). For this, we set \(\phi =A_{\varepsilon }{\textbf{u}}_\varepsilon \) in (8) and rewrite it and use (113) and the Cauchy–Schwarz inequality to arrive at

$$\begin{aligned} \nu \Vert A_{\varepsilon h}{\textbf{u}}_\varepsilon \Vert ^2&= (\textbf{f},A_{\varepsilon }{\textbf{u}}_\varepsilon )-({\textbf{u}}_{\varepsilon t},A_{\varepsilon }{\textbf{u}}_\varepsilon )-\tilde{b}({\textbf{u}}_\varepsilon ,{\textbf{u}}_\varepsilon ,A_{\varepsilon }{\textbf{u}}_\varepsilon )\\&\le C \big ( \Vert \textbf{f}\Vert ^2 +\Vert {\textbf{u}}_{\varepsilon t}\Vert ^2 + \Vert {\textbf{u}}_\varepsilon \Vert ^2\Vert A_{\varepsilon }^{\frac{1}{2}}{\textbf{u}}_\varepsilon \Vert ^4\big ) + \frac{\nu }{2}\Vert A_{\varepsilon }{\textbf{u}}_\varepsilon \Vert ^2. \end{aligned}$$

Multiply by \(\tau (t)\) and use (110), (115), (116) and (120) to complete the second proof.

Proof of the well-posedness of the discrete solution of problem (66)

We can rewritten (66) as

$$\begin{aligned} (\textbf{U}_{\varepsilon }^n,\phi _h)+\nu k a_{\varepsilon }(\textbf{U}_{\varepsilon }^n,\phi _h)+k\tilde{b}(\textbf{U}_{\varepsilon }^n,\textbf{U}_{\varepsilon }^n,\phi _h)= k(\textbf{f}^n,\phi _h) +(\textbf{U}_{\varepsilon }^{n-1},\phi _h),~~~\forall \phi _h\in \textbf{H}_h. \end{aligned}$$

Consider a function \(F:\textbf{H}_h\rightarrow \textbf{H}_h\) such that

$$\begin{aligned} (F(\textbf{v}),\phi _h) = (\textbf{v},\phi _h)+\nu k a_{\varepsilon }(\textbf{v},\phi _h)+k\tilde{b}(\textbf{v},\textbf{v},\phi _h)- k(\textbf{f}^n,\phi _h) -(\textbf{U}_{\varepsilon }^{n-1},\phi _h),~~~\forall \phi _h\in \textbf{H}_h. \end{aligned}$$

Clearly, F is continuous. Then, a use of pointcaré inequality and inverse hypothesis yields

$$\begin{aligned} (F(\textbf{U}_{\varepsilon }^n),\textbf{U}_{\varepsilon }^n)&= (\textbf{U}_{\varepsilon }^n,\textbf{U}_{\varepsilon }^n)+\nu k a_{\varepsilon }(\textbf{U}_{\varepsilon }^n,\textbf{U}_{\varepsilon }^n)+k\tilde{b}(\textbf{U}_{\varepsilon }^n,\textbf{U}_{\varepsilon }^n,\textbf{U}_{\varepsilon }^n)- k(\textbf{f}^n,\textbf{U}_{\varepsilon }^n) -(\textbf{U}_{\varepsilon }^{n-1},\textbf{U}_{\varepsilon }^n)\\&\ge \Vert \textbf{U}_{\varepsilon }^n\Vert ^2+\nu k \Vert A_{\varepsilon h}^{\frac{1}{2}} \textbf{U}_{\varepsilon }^n\Vert ^2 - k\Vert \textbf{f}^n\Vert \Vert \textbf{U}_{\varepsilon }^n\Vert -\Vert \textbf{U}_{\varepsilon }^{n-1}\Vert \Vert \textbf{U}_{\varepsilon }^n\Vert \\&\ge \Big (\big (1+\frac{\nu k\lambda _1}{c^2}\big ) \Vert \textbf{U}_{\varepsilon }^n\Vert - \big (k\Vert \textbf{f}^n\Vert +\Vert \textbf{U}_{\varepsilon }^{n-1}\Vert \big )\Big )\Vert \textbf{U}_{\varepsilon }^n\Vert . \end{aligned}$$

Now, choose \(\textbf{U}_{\varepsilon }^n\in \textbf{H}_h\) such that

$$\begin{aligned} \textbf{U}_{\varepsilon }^n = \frac{2\big (k\Vert \textbf{f}^n\Vert +\Vert \textbf{U}_{\varepsilon }^{n-1}\Vert \big )}{(\big (1+\frac{\nu k\lambda _1}{c^2}\big )}= \alpha _1. \end{aligned}$$

If either \(\Vert \textbf{f}^n\Vert \ne 0\) or \(\Vert \textbf{U}_{\varepsilon }^{n-1}\Vert \ne 0\), then \(\alpha _1>0\), which implies that there exists \(\textbf{U}_{\varepsilon }^*\in \textbf{H}_h\) such that \(\Vert \textbf{U}_{\varepsilon }^*\Vert \le \alpha _1\) and \(F(\textbf{U}_{\varepsilon }^*)=0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bir, B., Goswami, D. & Pani, A.K. Optimal Error Estimates of the Penalty Finite Element Method for the Unsteady Navier–Stokes Equations with Nonsmooth Initial Data. J Sci Comput 98, 51 (2024). https://doi.org/10.1007/s10915-023-02445-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02445-6

Keywords

Mathematics Subject Classification

Navigation