Skip to main content
Log in

Time-discretization of stochastic 2-D Navier–Stokes equations with a penalty-projection method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A time-discretization of the stochastic incompressible Navier–Stokes problem by penalty method is analyzed. Some error estimates are derived, combined, and eventually arrive at a speed of convergence in probability of order 1/4 of the main algorithm for the pair of variables velocity and pressure. Also, using the law of total probability, we obtain the strong convergence of the scheme for both variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20(3), 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation. IMA J. Numer. Anal. 34(2), 502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernard, P., Wallace, J.: Turbulent Flow: Analysis, Measurement, and Prediction. Wiley, New York (2002)

    Google Scholar 

  4. Bessaih, H., Brzeźniak, Z., Millet, A.: Splitting up method for the 2D stochastic Navier–Stokes equations. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 433–470 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Pinsky, M., Birnir, B.: Turbulence of a unidirectional flow. In: Probability, Geometry and Integrable Systems for Henry McKean’s Seventy-Fifth Birthday, pp. 29–52. Cambridge University Press, Cambridge (2008)

  6. Birnir, B.: The Kolmogorov–Obukhov statistical theory of turbulence. J. Nonlinear Sci. 23(4), 657–688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, vol. 183. Springer, Berlin (2012)

    MATH  Google Scholar 

  8. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. ESAIM Math. Model. Numer. Anal. Model. Math. Anal. Numer. 8(R2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Brzeźniak, Z., Carelli, E., Prohl, A.: Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33(3), 771–824 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brzeźniak, Z., Ferrario, B.: A note on stochastic Navier-Stokes equations with a generalized noise. Stoch. Partial Differ. Equ. Anal. Comput. 5(1), 53–80 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Capiński, M., Peszat, S.: On the existence of a solution to stochastic Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 44(2), 141–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible Stokes equation. SIAM J. Numer. Anal. 50(6), 2917–2939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Semin. Mat. Univ. Padova 31, 308–340 (1961)

    MathSciNet  MATH  Google Scholar 

  15. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49(1), 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Debussche, A., Printems, J.: Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 6(4), 761–781 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernando, B.P.W., Rüdiger, B., Sritharan, S.S.: Mild solutions of stochastic Navier–Stokes equation with jump noise in \(L^p\)-spaces. Math. Nachr. 288(14–15), 1615–1621 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDea Nonlinear Differ. Equ. Appl. 1(4), 403–423 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Field 102(3), 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flandoli, F., Schmalfuß, B.: Weak solutions and attractors for three-dimensional Navier–Stokes equations with nonregular force. J. Dyn. Differ. Equ. 11(2), 355–398 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Flandoli, F., Tortorelli, V.M.: Time discretization of Ornstein–Uhlenbeck equations and stochastic Navier–Stokes equations with a generalized noise. Stochastics 55(1–2), 141–165 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Giga, Y., Miyakawa, T.: Solutions in \({L}^r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Guermond, J.-L., Minev, P.D., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hou, T.Y., Luo, W., Rozovskii, B., Zhou, H.-M.: Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216(2), 687–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (2014)

    MATH  Google Scholar 

  27. Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier–Stokes equations. Appl. Math. Optim. 48(3), 195–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, volume 31. Dunod Paris (1969)

  29. Manna, U., Menaldi, J.-L., Sritharan, S.S.: Stochastic 2-D Navier–Stokes equation with artificial compressibility. Commun. Stoch. Anal. 1(1), 123–139 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Milstein, G.N., Tretyakov, M.: Layer methods for stochastic Navier–Stokes equations using simplest characteristics. J. Comput. Appl. Math. 302, 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2011)

    Google Scholar 

  32. Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  33. Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. ESAIM Math. Model. Numer. Anal. Model. Math. Anal. Numer. 35(6), 1055–1078 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations. Advances in Numerical Mathematics. Vieweg+Teubner Verlag, Berlin (2013)

    MATH  Google Scholar 

  35. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62(1), 49–73 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J.: On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 32(2), 386–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Témam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115–152 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  39. Témam, R.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1983)

  40. Témam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications, North-Holland (1984)

    MATH  Google Scholar 

  41. Yin, H.: Stochastic Navier–Stokes equations with artificial compressibility in random durations. Int. J. Stoch. Anal. (2010) 2010:Article ID 730492

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsiry A. Randrianasolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank M. Hutzenthaler and P.A. Razafimandimby for stimulating discussions. They are also grateful to the referee for his comments and suggestions which helped to improve the presentation of the paper. This work was part of the second author’s Ph.D. Dissertation at Montanuniversität Leoben and was supported by the Austrian Science Fund (FWF): P26958 and the German Research Foundation as part of the Collaborative Research Center SFB 1283.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausenblas, E., Randrianasolo, T.A. Time-discretization of stochastic 2-D Navier–Stokes equations with a penalty-projection method. Numer. Math. 143, 339–378 (2019). https://doi.org/10.1007/s00211-019-01057-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01057-3

Mathematics Subject Classification

Navigation