Skip to main content
Log in

A Conservative Sharp-Interface Numerical Method for Two-dimensional Compressible Two-phase Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, a conservative sharp-interface numerical method is developed to simulate compressible two-medium flows with a free interface. In the method, the cut-cell method is introduced to achieve a sharp interface. To avoid the complicated geometric cell merging approach in the cut-cell method, the small cut cells are updated using a flux/conserved variable merging/mixing method that considers the type of small cut cells (general, singular, and vanished). In addition, the residual conserved quantity is redistributed to ensure conservation during the re-initialization process of the level set function. Moreover, to handle thin or small-scale structures where the numerical oscillation may appear, the mixing cut-cell and ghost fluid method is adopted to update these cut cells with a conserved variables mixing approach. Various numerical tests are performed to verify the conservation and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availibility

The data of this study is available from the first author upon reasonable request.

References

  1. Saurel, R., Pantano, C.: Diffuse-interface capturing methods for compressible two-phase flows. Annu. Rev. Fluid Mech. 50, 105–130 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Zhang, C., Menshov, I., Wang, L., Shen, Z.: Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. J. Comput. Phys. 466, 111356 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Wallis, T., Barton, P.T., Nikiforakis, N.: A diffuse interface model of reactive-fluids and solid-dynamics. Computers & Structures 254, 106578 (2021)

    Google Scholar 

  4. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    MATH  Google Scholar 

  6. Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comput. Phys. 219, 553–578 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Chang, C.H., Deng, X.-L., Theofanous, T.G.: Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method. J. Comput. Phys. 242, 946–990 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Lin, J.Y., Shen, Y., Ding, H., Liu, N.S., Lu, X.Y.: Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method. J. Comput. Phys. 328, 140–159 (2017)

    MathSciNet  Google Scholar 

  9. Bai, X., Deng, X.-L.: A sharp interface method for compressible multi-phase flows based on the cut cell and ghost fluid methods. Adv. Appl. Math. Mech. 9, 1052–1075 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Deng, X.-L., Li, M.: Simulating compressible two-medium flows with sharp-interface adaptive Runge-Kutta discontinuous Galerkin methods. Journal of Scientific Computig 74, 1347–1368 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Zou, Z., Grenier, N., Kokh, S., Tenaud, C., Audit, E.: Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime. J. Comput. Phys. 448, 110735 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Xiao, M., Ni, G., Niu, X.: A robust interface method for reactive fluids with sharp interface. Computers & Fluids 223, 104915 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12, 861–889 (1986)

    MATH  Google Scholar 

  14. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21(3), 1115–1145 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13, 3002–3024 (2001)

    MATH  Google Scholar 

  18. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Shukla, R.K., Pantano, C., Freund, J.B.: An interface caputing method for simulation of multi-phase compressible flows. J. Comput. Phys. 229, 7411–7439 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Tiwari, A., Freund, J., Pantano, C.: A diffuse interface model with immiscibility preservation. J. Comput. Phys. 252, 290–309 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Shyue, K.M., Xiao, F.: An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach. J. Comput. Phys. 268, 326–354 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Chiapolino, A., Saurel, R., Nkonga, B.: Sharpening diffuse interfaces with compressible fluids on unstructured meshes. J. Comput. Phys. 340, 389–417 (2017)

    MathSciNet  MATH  Google Scholar 

  23. He, Z., Tian, B., Zhang, Y., Gao, F.: Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows. J. Comput. Phys. 333, 247–268 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Remmerswaal, R.A., Veldman, A.E.P.: Parabolic interface reconstruction for 2D volume of fluid methods. J. Comput. Phys. 469, 111473 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Mari\(\acute{c}\), T., Kothe, D. B., Bothe,D.: Unstructured un-split geometrical Volume-of-Fluid methods-A review, Journal of Computational Physics, 420 , 109695 (2020)

  26. Scapin, N., Costa, P., Brandt, L.: A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows. J. Comput. Phys. 407, 109251 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Sethian, J.A., Smereka, P.: Level Set Methods for Fluid Interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Sharma, A.: Level set method for computational multi-fluid dynamics: A review on developments, applications and analysis. Sadhana 40, 627–652 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Bahbah, C., Khalloufi, M., Larcher, A., Mesri, Y., Coupez, T., Valette, R., Hachem, E.: Conservative and adaptive level-set method for the simulation of two-fluid flows. Computers & Fluids 191, 104223 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Glimm, J., Grove, J., Li, X.L., Shyue, K.M., Zeng, Y., Zhang, Q.: Three-Dimensional Front Tracking. SIAM Journal of Scientific Computing 19(3), 703–727 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A Front-Tracking Method for the Computations of Multiphase Flow. J. Comput. Phys. 169(2), 708–759 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Koffi Bi, D. A., Tavares, M. , Ch\(\acute{e}\)nier,E., Vincent,S.: Accuracy and convergence of the curvature and normal vector discretizations for 3D static and dynamic front-tracking interfaces, Journal of Computational Physics, 461, 111197 (2022)

  34. Barlow, A., Hill, R., Shashkov, M.: Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics. Journal Computational Physics 276, 92–135 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Anderson, R.W., Dobrev, V.A., Kolev, T.V., Rieben, R.N., Tomov, V.Z.: High-order multi-material ALE hydrodynamics. SIAM J. Sci. Comput. 40(1), B32–B58 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Dyadechko,V., Shashkov,M.: Moment-of-fluid interface reconstruction, Tech. Rep. LA-UR-05-7571, Los Alamos National Laboratory, 2005. http://cnls.lanl.gov/~shashkov/

  37. Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method with moment of fluid interface representation. J. Comput. Phys. 279, 182–217 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Chen, X., Zhang, X.: An improved 2D MoF method by using high order derivatives. J. Comput. Phys. 349, 176–190 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Lyras, K.G., Lee, J.: A finite volume coupled level set and volume of fluid method with a mass conservation step for simulating two-phase flows. Int. J. Numer. Meth. Fluids 94, 1027–1047 (2022)

    MathSciNet  Google Scholar 

  41. Mukundan, A.A., Menard, T., de Motta, J.C.B., Berlemont, A.: A hybrid moment of fluid-level set framework for simulating primary atomization. J. Comput. Phys. 451, 110864 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Liu, Y.L., Shu, C.-W., Zhang, A.-M.: Weighted ghost fluid discontinuous Galerkin method for two-medium problems. J. Comput. Phys. 426, 109956 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Bempedelis, N., Ventikos, Y.: A simple ghost fluid method for compressible multicomponent flows with capillary effects. J. Comput. Phys. 424, 109861 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, X., Liu, T., Yu, C., Feng, C., Zeng, Z., Wang, K.: A Second-order Modified Ghost Fluid Method (2nd-MGFM) with Discontinuous Galerkin Method for 1-D compressible Multi-medium Problem with Cylindrical and Spherical Symmetry. J. Sci. Comput. 93, 14 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Bigdelou, P., Liu, C., Tarey, P., Ramaprabhu, P.: An efficient Ghost Fluid Method to remove overheating from material interfaces in compressible multi-medium flows. Computers & Fluids 233, 105250 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 200–224 (2002)

    MATH  Google Scholar 

  47. Wang, C.W., Liu, T.G., Khoo, B.C.: A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28(1), 278–302 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Bempedelis, N., Ventikos, Y.: A simplified approach for simulations of multidimensional compressible multicomponent flows: the grid-aligned ghost fluid method. Journal Computational Physics 405, 109129 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Houim, R.W., Kuo, K.K.: A ghost fluid method for compressible reacting flows with phase change. Journal Computational Physics 235, 865–900 (2013)

    MathSciNet  Google Scholar 

  50. Xu, L., Yang, W., Liu, T.G.: An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions. Journal Computational Physics 448, 110707 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Lin, J., Ding, H., Lu, X., Wang, P.: A Comparison Study of Numerical Methods for Compressible Two-Phase Flows. Adv. Appl. Math. Mech. 9, 1111–1132 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Clarke, D.K., Salas, M., Hassan, H.: Euler calculations for multielement airfoils using Cartesian grids. AIAA J. 24, 353–358 (1986)

    MATH  Google Scholar 

  53. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Hartmann, D., Meinke, M., Schroder, W.: An adaptive multilevel multigrid formulation for cartesian hierarchical grid methods. Computer & Fluids 37(9), 1103–1125 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Ji, H., Lien, F.S., Yee, E.: Numerical simulation of detonation using an adaptive cartesian cut-cell method combined with a cell-merging technique. Computer & Fluids 39(6), 1041–1057 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Hartmann, D., Meinke, M., Schroder, W.: A strictly conservative cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200, 1038–1052 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Pember, R.B., Bell, J.B., Colella, P., Curtchfield, W.Y., Welcome, M.L.: An adaptive cartesian grid method for unsteady compressible flow in irregular regions. Journal of Computational Physcis 120(2), 278–304 (1995)

    MathSciNet  MATH  Google Scholar 

  58. Almgren, A.S., Bell, J.B., Colella, P., Marthaler, T.: A cartesian grid projection method for the incompressible Euler equations in complex geometries. SIAM J. Sci. Comput. 18(5), 1289–1309 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Colella, P., Graves, D.T., Keen, B.J., Modiano, D.: A cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys. 211(1), 347–366 (2006)

    MathSciNet  MATH  Google Scholar 

  60. Graves, D., Colella, P., Modiano, D., Johnson, J., Sjogreen, B., Gao, X.: A cartesian grid embedded boundary method for the compressible Navier-Stokes equations. Communications in Applied Mathematics and Computational Science 8(1), 99–122 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Gokhale, N., Nikiforakis, N., Klein, R.: A dimensionally split cartesian cut cell method for hyperbolic conservation laws. J. Comput. Phys. 364, 186–208 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Helzel, C., Berger, M.J., LeVeque, R.J.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26(3), 785–809 (2005)

    MathSciNet  MATH  Google Scholar 

  63. Berger, M., Helzel, C.: A simplified h-box method for embedded boundary grids. SIAM J. Sci. Comput. 34(2), 861–888 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Xie, Z.: An implicit Cartesian cut-cell method for incompressible viscous flows with complex geometries. Comput. Methods Appl. Mech. Eng. 399, 115449 (2022)

    MathSciNet  MATH  Google Scholar 

  65. Xie, Z., Lin, P., Stoesser, T.: A conservative and consistent implicit Cartesian cut-cell method for moving geometries with reduced spurious pressure oscillations. J. Comput. Phys. 459, 111124 (2022)

    MathSciNet  MATH  Google Scholar 

  66. Pan, S., Han, L., Hu, X., Adams, N.A.: A conservative interface-interaction method for compressible multi-material flows. J. Comput. Phys. 371, 870–895 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Kim, H., Liou, M.S.: Adaptive Cartesian cut-cell sharp interface method(aC\(^3\)SIM) for three-dimensional multi-phase flows. Shock Waves 29, 1023–1041 (2019)

    Google Scholar 

  68. Shen, Y., Ren, Y., Ding, H.: A 3D conservative sharp interface method for simulation of compressible two-phase flows. J. Comput. Phys. 403, 109107 (2020)

    MathSciNet  MATH  Google Scholar 

  69. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  70. Qiu, J., Shu, C.-W.: Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005)

    MathSciNet  MATH  Google Scholar 

  71. Zhang, Q., Shu, C.-W.: Stability Analysis and A Priori Error Estimates of the Third Order Explicit RungeCKutta Discontinuous Galerkin Method for Scalar Conservation Laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010)

    MathSciNet  MATH  Google Scholar 

  72. Heimann, F., Engwer, C., Ippisch, O., Bastian, P.: An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow. Int. J. Numer. Meth. Fluids 71(3), 269–293 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Kummer, F.: Extended discontinuous Galerkin methods for two-phase flows: the spatial discretization. Int. J. Numer. Meth. Eng. 109(2), 259–289 (2017)

    MathSciNet  Google Scholar 

  74. Bai, X., Li, M.: Simulating compressible two-phase flows with sharp-interface discontinuous Galerkin methods based on ghost fluid method and cut cell scheme. J. Comput. Phys. 459, 111107 (2022)

    MathSciNet  MATH  Google Scholar 

  75. Berger, M., Giuliani, A.: A state redistribution algorithm for finite volume schemes on cut cell meshes. J. Comput. Phys. 428, 109820 (2021)

    MathSciNet  MATH  Google Scholar 

  76. Toro, E.F.: The HLLC Riemann solver. Shock Waves 29, 1065–1082 (2019)

    Google Scholar 

  77. Toro, E.F.: The HLL and HLLC Riemann Solvers. Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  78. Simon, S., Mandal, J.C.: A simple cure for numerical shock instability in the HLLC Riemann solver. J. Comput. Phys. 378, 477–496 (2019)

    MathSciNet  MATH  Google Scholar 

  79. Schleper, V.: A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions. Appl. Numer. Math. 108, 256–270 (2016)

    MathSciNet  MATH  Google Scholar 

  80. Vides, J., Nkonga, B., Audit, E.: A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws. J. Comput. Phys. 280, 643–675 (2015)

    MathSciNet  MATH  Google Scholar 

  81. He, X., Wang, K., Liu, T., Feng, Y., Zhang, B., Yuan, W., Wang, X.: HODG:high-order discontinuous Galerkin methods for solving compressible Euler and Navier-Stokes equations-an open-source component-based development framework. Comput. Phys. Commun. 286, 108660 (2023)

    MATH  Google Scholar 

  82. Danis, M.E., Yan, J.: A new direct discontinuous Galerkin method with interface correction for two-dimensional compressible Navier-Stokes equations. J. Comput. Phys. 452, 110904 (2022)

    MathSciNet  MATH  Google Scholar 

  83. Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: Unlimited anchored adaptived Level Set. J. Comput. Phys. 224, 836–866 (2007)

    MATH  Google Scholar 

  84. Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: An adaptive Level Set approach for incompressible two-phase flow. J. Comput. Phys. 148, 81–124 (1999)

    MathSciNet  MATH  Google Scholar 

  85. Zeng, Y., Xuan, A., Blaschke, J., Shen, L.: A parallel cell-centered adaptive level set framework for efficient simulation of two-phase flows with subcycling and non-subcycling. J. Comput. Phys. 448, 110740 (2022)

    MathSciNet  MATH  Google Scholar 

  86. Liu, X., Zhang, B., Sun, J.: An improved implicit re-initialization method for the level set function applied to shape and topology optimization of fluid. J. Comput. Appl. Math. 281, 207–229 (2015)

    MathSciNet  MATH  Google Scholar 

  87. Zhang, W., Myers, A., Gott, K., Almgren, A., Bell, J.: AMReX: Block-structured adaptive mesh refinement for multiphysics applications. The International Journal of High Performance Computing Applications 35(6), 508–526 (2021)

    Google Scholar 

  88. Gupta, A., Krishnan, U.M., Mandal, T.K., Chowdhury, R., Nguyen, V.P.: An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Comput. Methods Appl. Mech. Eng. 399, 115347 (2022)

    MathSciNet  MATH  Google Scholar 

  89. Cockburn, B., Shu, C.-W.: RungeCKutta discontinuous Galerkin Methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    MathSciNet  MATH  Google Scholar 

  90. G. Gassner, F. L\(\ddot{o}\)rcher, C. D. Munz. A discontinuous Galerkin scheme based on a space-time expansion II. Viscous Flow equations in multidimensions, Journal of Scientific Computing, 34(3), 260-286 (2008)

  91. Lu, H., Zhu, J., Wang, D., Zhao, N.: Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow. Computers & Fluids 126, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  92. Terashima, H., Tryggvason, G.: A front-tracking method with projected interface conditions for compressible multi-medium flows. Computers & Fluids 39, 1804–1814 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    MATH  Google Scholar 

  94. Shukla, R.K.: Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows. J. Comput. Phys. 276, 508–540 (2014)

    MathSciNet  MATH  Google Scholar 

  95. Hu, X.Y., Adams, N.A., Iaccarino, G.: On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. J. Comput. Phys. 228, 6572–6589 (2009)

    MathSciNet  MATH  Google Scholar 

  96. Deng, X., Inaba, S., Xie, B., Shyue, K.-M., Xiao, F.: High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. J. Comput. Phys. 371, 945–966 (2018)

    MathSciNet  MATH  Google Scholar 

  97. Ge, L., Zhang, A.-M., Wang, S.-P.: Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach. J. Comput. Phys. 404, 109113 (2020)

    MathSciNet  MATH  Google Scholar 

  98. Phan, T.-H., Nguyen, V.-T., Park, W.-G.: Numerical study on dynamics of an underwater explosion bubble based on compressible homogeneous mixture model. Computers & Fluids 191, 104262 (2019)

    MathSciNet  MATH  Google Scholar 

  99. Moradloo, A., Adib, A., Pirooznia, A.: Damage analysis of arch concrete dams subjected to underwater explosion. Appl. Math. Model. 75, 709–734 (2019)

    MathSciNet  MATH  Google Scholar 

  100. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228, 4012–4037 (2009)

    MATH  Google Scholar 

  101. Johnsen, E., Colonius, T.: Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231–262 (2009)

    MathSciNet  MATH  Google Scholar 

  102. Goncalves da Silva, E., Parnaudeau, P.: Numerical study of pressure loads generated by a shock-induced bubble collapse. Phys. Fluids 33, 113318 (2021)

    Google Scholar 

  103. Apazidis, N.: Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28, 046101 (2016)

    Google Scholar 

  104. Bourne, N.K., Field, J.E.: Shock-induced collapse of single cavities in liquids. J. Fluid Mech. 244, 225–240 (1992)

    Google Scholar 

  105. Hawker, N.A., Ventikos, Y.: Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. J. Fluid Mech. 701, 59–97 (2012)

    MATH  Google Scholar 

  106. Fyfe, D.E., Oran, E.S., Fritts, M.J.: Surface tension and viscosity with Lagrangian Hydrodynamics on a triangular mesh. J. Comput. Phys. 76, 349–384 (1988)

    MATH  Google Scholar 

  107. Bai, X., Deng, X.L., Jiang, L.: A comparative study of the single-mode Richtmyer-Meshkov instability. Shock Waves 28, 795–813 (2018)

    Google Scholar 

  108. Yang, Y.M., Zhang, Q., Sharp, D.H.: Small amplitude theory of Richtmyer-Meshkov instability. Phys. Fluids 6, 1856–1873 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Xiao Bai is partially supported by the Natural Science Foundation of Universities in Anhui Province (Grant No. KJ2021A0515), the Pre-research Project of National Natural Science Foundation of China (Grant No. KZ42019112) and the Scientific Research Starting Foundation for Anhui Polytechnic University (Grant No. S022018028). Maojun Li is partially supported by the National Natural Science Foundation of China (Grant Nos. 11871139, 12271082, 62231016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojun Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Li, M. A Conservative Sharp-Interface Numerical Method for Two-dimensional Compressible Two-phase Flows. J Sci Comput 97, 30 (2023). https://doi.org/10.1007/s10915-023-02338-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02338-8

Keywords

Mathematics Subject Classification

Navigation