Skip to main content
Log in

Adaptive Cartesian cut-cell sharp interface method (aC3SIM) for three-dimensional multi-phase flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A sharp interface method has been developed for treating interfacial discontinuities in compressible multi-phase fluids on three-dimensional Cartesian cut-cell grids. The evolution of the interfacial discontinuities in the Cartesian grid is captured by the level-set method. The intersections between interfacial fronts and Cartesian grids are interpolated using level-set function values at the vertices of Cartesian grids. Triangular surfaces are then constructed on the interfacial fronts. A novel cell merge method is used for complex topological changes. Jump conditions across discontinuous interfaces are enforced by reconstruction of interfacial flow variables using a constrained least-squares method. The inviscid flux across internal faces of the same fluid is calculated by the local Lax–Friedrichs flux. Manufactured solutions for interfaces are suggested for validation of the reconstruction method. Laplace’s law test results show that the present method drastically reduces the parasite currents compared to conventional interface treatment methods. Bubble rise problems also show the validity and accuracy of the proposed sharp interface method for immiscible two-phase fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Yih, C.-S.: Instability due to viscous stratification. J. Fluid Mech. 27, 337–352 (1967). https://doi.org/10.1017/S0022112067000357

    Article  MATH  Google Scholar 

  2. Nourgaliev, R.R., Liou, M.-S., Theofanous, T.G.: Numerical prediction of interfacial instabilities: Sharp interface method (SIM). J. Comput. Phys. 227, 3940–3970 (2008). https://doi.org/10.1016/j.jcp.2007.12.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977). https://doi.org/10.1016/0021-9991(77)90100-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite volume method for simulations of flow in complex geometries. J. Comput. Phys. 171(1), 132–150 (2001). https://doi.org/10.1006/jcph.2001.6778

    Article  MathSciNet  MATH  Google Scholar 

  5. Glimm, J.: Tracking of interface for fluid flow: Accurate method for piecewise smooth problems. In: Meyer, R.E. (ed.) Transonic, Shock, and Multidimensional Flows: Advances in Scientific Computing, vol. 1, pp. 259–287. Academic Press Inc. (1982). https://doi.org/10.1016/B978-0-12-493280-7.50016-4

    Chapter  Google Scholar 

  6. Glimm, J., Grove, J.W., Li, X.L., Shyue, K.-M., Zeng, Y., Zhang, Q.: Three dimensional front tracking. SIAM J. Sci. Comput. 19(3), 703–727 (1998). https://doi.org/10.1137/S1064827595293600

    Article  MathSciNet  MATH  Google Scholar 

  7. Glimm, J., Li, X., Liu, Y., Xu, Z., Zhao, N.: Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41(5), 1926–1947 (2003). https://doi.org/10.1137/S0036142901388627

    Article  MathSciNet  MATH  Google Scholar 

  8. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190(2), 651–681 (2003). https://doi.org/10.1016/S0021-9991(03)00301-2

    Article  MATH  Google Scholar 

  10. Sambasivan, S.K., Udaykumar, H.S.: Ghost fluid method for strong shock interactions Part 1: Fluid–fluid interfaces. AIAA J. 47(12), 2907–2922 (2009). https://doi.org/10.2514/1.43148

    Article  Google Scholar 

  11. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228(11), 4012–4037 (2009). https://doi.org/10.1016/j.jcp.2009.02.023

    Article  MATH  Google Scholar 

  12. Bo, W., Grove, J.W.: A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Comput. Fluids 90, 113–122 (2014). https://doi.org/10.1016/j.compfluid.2013.11.013

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comput. Phys. 219(2), 553–578 (2006). https://doi.org/10.1016/j.jcp.2006.04.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, C.-H., Deng, X.-L., Theofanous, T.G.: Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method. J. Comput. Phys. 242, 946–990 (2013). https://doi.org/10.1016/j.jcp.2013.01.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, J.-Y., Shen, Y., Ding, H., Liu, N.-S., Lu, X.-Y.: Simulation of compressible two-phase flows with topology change of fluid–fluid interface by a robust cut-cell method. J. Comput. Phys. 328, 140–159 (2017). https://doi.org/10.1016/j.jcp.2016.10.023

    Article  MathSciNet  Google Scholar 

  16. Bai, X., Deng, X.-L.: A sharp interface method for compressible multi-phase flows based on the cut cell and ghost fluid methods. Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017). https://doi.org/10.4208/aamm.2015.m1283

    Article  MathSciNet  Google Scholar 

  17. Deng, X.-L., Li, M.: Simulating compressible two-medium flows with sharp-interface adaptive Runge–Kutta discontinuous Galerkin methods. J. Sci. Comput. 74(3), 1347–1368 (2018). https://doi.org/10.1007/s10915-017-0511-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Quirk, J.J.: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids 23, 125–142 (1994). https://doi.org/10.1016/0045-7930(94)90031-0

    Article  MATH  Google Scholar 

  19. Lahur, P.R., Nakamura, Y.: Flow calculation of moving body on cartesian grid by using new cell merge method. Trans. Jpn. Soc. Aeronaut. Sp. Sc. 44(145), 171–178 (2001). https://doi.org/10.2322/tjsass.44.171

    Article  Google Scholar 

  20. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J

    Article  MathSciNet  MATH  Google Scholar 

  22. Enright, D., Fedkiw, R., Ferziger, J.H., Mitchell, I.: A hybrid particle level set method for improving interface capturing. J. Comput. Phys. 183, 83–116 (2002). https://doi.org/10.1006/jcph.2002.7166

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim, H., Liou, M.-S.: Accurate adaptive level set method and sharpening technique for three-dimensional deforming interfaces. Comput. Fluids 44(1), 111–129 (2011). https://doi.org/10.1016/j.compfluid.2010.12.020

    Article  MATH  Google Scholar 

  24. Blazek, J.: Computational Fluid Dynamics: Principles and Applications, pp. 8–19. Elsevier, Amsterdam (2001). https://doi.org/10.1016/B978-0-08-044506-9.X5000-0

    MATH  Google Scholar 

  25. Peng, D.P., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999). https://doi.org/10.1006/jcph.1999.6345

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, J.S., Peng, D.P.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000). https://doi.org/10.1137/S106482759732455X

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z.J.: Improved formulation for geometric properties of arbitrary polyhedra. AIAA J. 37, 255 (1999). https://doi.org/10.2514/2.604

    Article  Google Scholar 

  28. Renardy, Y., Renardy, R.: PROST: A parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183, 400–421 (2002). https://doi.org/10.1006/jcph.2002.7190

    Article  MathSciNet  MATH  Google Scholar 

  29. Grace, J.R.: Shapes and velocities of bubbles rising in infinite liquids. Trans. Inst. Chem. Eng. 51, 116–120 (1973)

    Google Scholar 

  30. Annaland, M.V.S., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of gas bubbles behavior using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60, 2999–3011 (2005). https://doi.org/10.1016/j.ces.2005.01.031

    Article  Google Scholar 

  31. Singh, R., Shyy, W.: Three-dimensional adaptive Cartesian grid method with conservative interface reconstructuring and reconstruction. J. Comput. Phys. 224, 150–167 (2007). https://doi.org/10.1016/j.jcp.2006.12.026

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author, Hyoungjin Kim, would like to acknowledge his co-author, Meng-Sing Liou, who was a great mentor, colleague, and friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kim.

Additional information

Communicated by C.-H. Chang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Liou, MS. Adaptive Cartesian cut-cell sharp interface method (aC3SIM) for three-dimensional multi-phase flows. Shock Waves 29, 1023–1041 (2019). https://doi.org/10.1007/s00193-019-00902-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00902-6

Keywords

Navigation