Skip to main content
Log in

A Physical-Constraint-Preserving Discontinuous Galerkin Method for Weakly Compressible Two-Phase Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work focuses on the robust and high-order numerical simulations of weakly compressible two-phase flows by using the discontinuous Galerkin (DG) method combined with an explicit strong-stability-preserving Runge–Kutta scheme. In order to improve the computational robustness under large density ratios, a nonlinear weighted essentially non-oscillatory (WENO) limiter and a positivity-preserving limiter are specially designed and applied with the aim of dampening the nonphysical oscillations around the phase interface and preventing the occurrence of negative density, respectively. More importantly, we theoretically prove that the present method is able to satisfy the uniform-pressure–velocity criterion which states that uniform pressure and velocity profiles around an isolated phase interface should be preserved during the simulation. The performance of the present method is validated by a range of benchmark test cases with density ratios up to 1000:1. The results demonstrate that the present method possesses a good capability of simulating weakly compressible two-phase flows with large density ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Mirjalili, B., Jain, S.S., Dodd, M.: Interface-capturing methods for two-phase flows: an overview and recent developments. Center for Turbulence Research, Annual Research Briefs (2017)

    Google Scholar 

  2. Volpe, G.: Performance of compressible flow codes at low Mach numbers. AIAA J. 31, 49 (1993)

    MATH  Google Scholar 

  3. Turkel, E.: Review of preconditioning techniques for fluid dynamics. Appl. Num. Math. 12, 257–284 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Sesterhenn, J., Mueller, B., Thomann, H.: On the cancellation problem in calculating compressible low Mach number flows. J. Comput. Phys. 151, 597–615 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Guillard, H., Viozat, C.: On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28, 63–86 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Schneider, T., Botta, N., Geratz, K.J., Klein, R.: Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. J. Comput. Phys. 155, 248–286 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Noelle, S., Bispen, G., Arun, K.R., Lukáčová-Medviďová, M., Munz, C.-D.: A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36, B989–B1024 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Černe, G., Petelin, S., Tiselj, I.: Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow. J. Comput. Phys. 171, 776–804 (2001)

    MATH  Google Scholar 

  10. Sussman, M., Smith, K., Hussaini, M., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221, 469–505 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Bao, W., Jin, S.: Weakly compressible high-order I-stable central difference schemes for incompressible viscous flows. Comput. Meth. Appl. Mech. Eng. 22, 5009–5026 (2001)

    MATH  Google Scholar 

  12. Vittoz, L., Oger, G., De Leffe, M., Le Touzé, D.: Comparisons of weakly-compressible and truly incompressible approaches for viscous flow into high-order Cartesian-grid finite volume framework. J. Comput. Phys. X 1, 100015 (2019)

    MathSciNet  Google Scholar 

  13. Matsushita, S., Aoki, T.: A weakly compressible scheme with a diffuse-interface method for low Mach number two-phase flows. J. Comput. Phys. 376, 838–862 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Yang, K., Aoki, T.: Weakly compressible Navier–Stokes solver based on evolving pressure projection method for two-phase flow simulations. J. Comput. Phys. 431, 110113 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Matsushita, S., Aoki, T.: Gas-liquid two-phase flows simulation based on weakly compressible scheme with interface-adapted AMR method. J. Comput. Phys. 15, 110605 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Kajzer, A., Pozorski, J.: A weakly compressible, diffuse-interface model for two-phase flows, Flow. Turb. Combust. 105, 299–333 (2020)

    MATH  Google Scholar 

  17. Re, B., Abgrall, R.: A pressure-based method for weakly compressible two-phase flows under a Baer–Nunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Methods Fluids 94, 1183–1232 (2022)

    MathSciNet  Google Scholar 

  18. Bermúdez, A., Busto, S., Dumbser, M., Ferrín, J., Saavedra, L., Vázquez-Cendón, M.: A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows. J. Comput. Phys. 421, 109743 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Busto, S., Río-Martín, L., Vázquez-Cendón, M., Dumbser, M.: A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes. Appl. Math. Comput. 402, 126117 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Lukácová-Medvidóvá, M., Puppo, G., Thomann, A.: An all Mach number finite volume method for isentropic two-phase flow. J. Numer. Math. (2022). https://doi.org/10.1515/jnma-2022-0015

    Article  Google Scholar 

  21. Chanteperdrix, C.: Modélisation et simulation numérique d’écoulements diphasiques à interface libre. Application à l’étude des mouvements de liquides dans les réservoirs de véhicules spatiaux, PhD thesis, L’École Nationale Supérieure de L’Aéronautique et de L’Espace, (2004)

  22. Drew, D.A.: Mathematical modelling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)

    Google Scholar 

  23. Grenier, N., Vila, J.-P., Villedieu, P.: An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows. J. Comput. Phys. 252, 1–19 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Li, Z., Oger, G., Le Touzé, D.: A finite volume WENO scheme for immiscible inviscid two-phase flows. J. Comput. Phys. 418, 109601 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Li, Z., Vittoz, L., Oger, G., Le Touzé, D.: A simplified and efficient weakly-compressible FV-WENO scheme for immiscible two-phase flows. Comput. Fluids 244, 105555 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Wang, Z.J., Fidkowski, K., Rémi Abgrall, F., Bassi, D., Caraeni, A., Cary, H., Deconinck, R., Hartmann, K., Hillewaert, H.T., Huynh, N., Kroll, G., May, P.-O., van Persson, B., Leer, M.: Visbal, high-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)

    MATH  Google Scholar 

  27. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report, LA-UR-73-479, (1973)

  28. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional system. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Luo, H., Baum, J.D., Löhner, R.: A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids. J. Comput. Phys. 227, 8875–8893 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–2776 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Shen, H., Wen, C.-Y., Parasani, M., Shu, C.-W.: Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668–692 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Shahbazi, K.: Robust second-order scheme for multi-phase flow computations. J. Comput. Phys. 339, 163–178 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Shahbazi, K.: Positivity preservation of a first-order scheme for a quasi-conservative two-material model. SIAM J. Sci. Comput. 43, B1029–B1055 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Cheng, J., Zhang, F., Liu, T.G.: A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows. J. Sci. Comput. 85, 12 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Cheng, J., Zhang, F.: A bound-preserving and positivity-preserving path-conservative discontinuous Galerkin method for solving five-equation model of compressible two-medium flows. SIAM J. Sci. Comput. 44, B1196–B1220 (2022)

    MathSciNet  Google Scholar 

  39. Zhang, F., Cheng, J.: A bound-preserving and positivity-preserving finite volume WENO scheme for solving five-equation model of two-medium flows. Commun. Nonlinear Sci. Numer. Simul. 114, 106649 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    MathSciNet  MATH  Google Scholar 

  41. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Qiu, J.X., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer (2009)

    MATH  Google Scholar 

  44. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Liu, X.-D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33, A939–A965 (2011)

    MathSciNet  Google Scholar 

  46. Frandsena, J.B., Borthwick, A.G.L.: Simulation of sloshing motions in fixed and vertically excited containers using a 2-D inviscid \(\sigma \)-transformed finite difference solver. J. Fluids Struct. 18, 197–514 (2003)

    Google Scholar 

  47. Tadjbakhsh, I., Keller, J.B.: Standing surface waves of finite amplitude. J. Fluid Mech. 8, 442–451 (1960)

    MathSciNet  MATH  Google Scholar 

  48. Puckett, E.G., Almgren, A.S., Bell, J.B., Marcus, D.L., Rider, W.J.: A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130, 269–282 (1997)

    MATH  Google Scholar 

  49. Parameswaran, S., Mandal, J.C.: A novel Roe solver for incompressible two-phase flow problems. J. Comput. Phys. 390, 405–424 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Martin, J.C., Moyce, W.J., Martin, J.C., Moyce, W.J., Penney, W.G., Price, A.T., Thornhill, C.K.: An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. Lond. Ser. A 244, 312–324 (1952)

    MATH  Google Scholar 

  51. Lobovský, L., Botia-Vera, E., Castellana, F., Mas-Soler, J., Souto-Iglesias, A.: Experimental investigation of dynamic pressure loads during dam break. J. Comput. Phys. 48, 407–434 (2014)

    Google Scholar 

  52. Yang, R., Li, H., Yang, A.: A HLLC-type finite volume method for incompressible two-phase flows. Comput. Fluids 213, 104715 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support provided by the National Natural Science Foundation of China Nos. 12001020 and 12171046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Here, we are going to prove that the WENO reconstructed polynomial solution preserves uniform velocity and pressure. The velocity obtained from the WENO reconstructed solution (36) is

$$\begin{aligned} \begin{aligned} u_h^{(r)}(x_i^\alpha , y) = \frac{2 u_0 {\mathcal {W}}_r([q_1]_{i,j}) + u_0 {\mathcal {W}}_r([q_2]_{i,l})}{2{\mathcal {W}}_r([q_1]_{i,j}) + {\mathcal {W}}_r([q_2]_{i,l})}\equiv u_0, \\ v_h^{(r)}(x_i^\alpha , y) = \frac{2 v_0 {\mathcal {W}}_r([q_1]_{i,j}) + v_0 {\mathcal {W}}_r([q_2]_{i,l})}{2{\mathcal {W}}_r([q_1]_{i,j}) + {\mathcal {W}}_r([q_2]_{i,l})}\equiv v_0. \end{aligned} \end{aligned}$$

Thus, uniform velocity is preserved. Next, based on the pressure equilibrium

$$\begin{aligned} p_h^{(r)}(x_i^\alpha , y) = p_0 + c_1^2\left( \frac{(\tilde{\rho }_1)_{h}^{(r)}}{(z_1)_{h}^{(r)}} - \rho _{1,0}\right) = p_0 + c_2^2\left( \frac{(\tilde{\rho }_2)_{h}^{(r)}}{(z_2)_{h}^{(r)}} - \rho _{2,0}\right) , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&(\tilde{\rho }_1)_{h}^{(r)}(x_i^\alpha , y) = \rho _{1,0}\overline{(z_1)}_{i,j} \!+\! \frac{\rho _{1,0}}{\rho _{1,0} \!-\! \rho _{2,0}}{\mathcal {W}}_r([q_2]_{i,l}),\\&(\tilde{\rho }_2)_{h}^{(r)}(x_i^\alpha , y) = \rho _{2,0}\overline{(z_2)}_{i,j} \!-\! \frac{\rho _{2,0}}{\rho _{1,0} \!-\! \rho _{2,0}}{\mathcal {W}}_r([q_2]_{i,l}), \end{aligned} \end{aligned}$$

we have the reconstructed equilibrium volume fraction

$$\begin{aligned} \begin{aligned}&(z_1)_{h}^{(r)}(x_i^\alpha , y) = \overline{(z_1)}_{i,j} \!+\! \frac{1}{\rho _{1,0} \!-\! \rho _{2,0}}{\mathcal {W}}_r([q_2]_{i,l}), \\&(z_2)_{h}^{(r)}(x_i^\alpha , y) \!=\! \overline{(z_2)}_{i,j} \!-\! \frac{1}{\rho _{1,0} \!-\! \rho _{2,0}}{\mathcal {W}}_r([q_2]_{i,l}), \end{aligned} \end{aligned}$$

which implies that \(p_{h}^{(r)}(x_i^\alpha , y) \equiv p_0\). This completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Cheng, J. & Liu, T. A Physical-Constraint-Preserving Discontinuous Galerkin Method for Weakly Compressible Two-Phase Flows. J Sci Comput 96, 84 (2023). https://doi.org/10.1007/s10915-023-02306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02306-2

Keywords

Navigation