Skip to main content
Log in

Multiple-Relaxation Runge Kutta Methods for Conservative Dynamical Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We generalize the idea of relaxation time stepping methods in order to preserve multiple nonlinear conserved quantities of a dynamical system by projecting along directions defined by multiple time stepping algorithms. Similar to the directional projection method of Calvo et. al. we use embedded Runge–Kutta methods to facilitate this in a computationally efficient manner. Proof of the accuracy of the modified RK methods and the existence of valid relaxation parameters are given, under some restrictions. Among other examples, we apply this technique to Implicit–Explicit Runge–Kutta time integration for the Korteweg–de Vries equation and investigate the feasibility and effect of conserving multiple invariants for multi-soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets and source code generated and analyzed during the current study are available in [2].

References

  1. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow: part I. J. Comput. Phys. 135(2), 103–114 (1997)

    Article  MATH  Google Scholar 

  2. Biswas, A., Ketcheson, D.I.: Code for multiple-relaxation Runge–Kutta methods for conservative dynamical systems. https://github.com/abhibsws/Multiple_Relaxation_RK_Methods. (2023)

  3. Calvo, M., Laburta, M., Montijano, J.I., Rández, L.: Error growth in the numerical integration of periodic orbits. Math. Comput. Simul. 81(12), 2646–2661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvo, M.P., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28(3), 868–885 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calvo, M.P., Sanz-Serna, J.M.: The development of variable-step symplectic integrators, with application to the two-body problem. SIAM J. Sci. Comput. 14(4), 936–952 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cano, B., Sanz-Serna, J.M.: Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems. SIAM J. Numer. Anal. 34(4), 1391–1417 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, G.J.: Stability of Runge–Kutta methods for trajectory problems. IMA J. Numer. Anal. 7(1), 1–13 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation. Numer. Math. 75(4), 421–445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dekker, K., Verwer, J.G.: Stability of Runge–Kutta methods for stiff nonlinear differential equations. CWI Monographs 2 (1984)

  10. Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions: the nonlinear Schrödinger equation. IMA J. Numer. Anal. 20(2), 235–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fehlberg, E.: Low-order classical Runge–Kutta formulas with stepsize control and their application to some heat transfer problems, vol. 315. National Aeronautics and Space Administration (1969)

  12. Gear, C.W.: Invariants and numerical methods for ODEs. Phys. D 60(1–4), 303–310 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations. Springer (2006)

  14. Heun, K.: Neue methoden zur approximativen integration der differentialgleichungen einer unabhängigen veränderlichen. Z. Math. Phys. 45, 23–38 (1900)

  15. Ionescu, A., Militaru, R., Munteanu, F.: Geometrical methods and numerical computations for prey-predator systems. Br. J. Math. Comput. Sci. 10(5), 1–15 (2015)

    Article  Google Scholar 

  16. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ketcheson, D.I.: Relaxation Runge–Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019)

  18. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ranocha, H., Ketcheson, D.I.: Relaxation Runge–Kutta methods for Hamiltonian problems. J. Sci. Comput. 84(1), 1–27 (2020)

  21. Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes. Numer. Math. 146(4), 875–906 (2020)

  22. Ranocha, H., Quezada de Luna, M., Ketcheson, D.I.: On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations. Part. Differ. Equ. Appl. 2(6), 1–26 (2021)

  23. Ranocha, H., Mitsotakis, D., Ketcheson, D.I.: A broad class of conservative numerical methods for dispersive wave equations. Commun. Comput. Phys. (2021)

  24. Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42(2), A612–A638 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Uzunca, M.: Preservation of the invariants of Lotka-Volterra equations by iterated deferred correction methods. TWMS J. App. and Eng, Math (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Biswas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A: List of RK Methods

See Tables 2, 3, 4, 5, 6 and 7.

Table 2 SSPRK(2,2): Second-order method \((A,\vec {b}^{\,1})\) with a first-order embedded method \((A,\vec {b}^{\,2})\)
Table 3 SSPRK(3,3): Third-order method \((A,\vec {b}^{\,1})\) with \((A,\vec {b}^{\,2})\) and \((A,\vec {b}^{\,3})\) as second-order embedded methods
Table 4 Heun(3,3): Third-order method \((A,\vec {b}^{\,1})\) with a second-order embedded method \((A,\vec {b}^{\,2})\)
Table 5 RK(4,4): Fourth-order method \((A,\vec {b}^{\,1})\) with a second-order embedded method \((A,\vec {b}^{\,2})\)
Table 6 Fehlberg(6,4): Fifth-order method \((A,\vec {b}^{\,1})\) with a fourth-order embedded method \((A,\vec {b}^{\,2})\), and \((A,\vec {b}^{\,3})\) and \((A,\vec {b}^{\,4})\) as third-order embedded methods
Table 7 DP(7,5): Fifth-order method \((A,\vec {b}^{\,1})\) with \((A,\vec {b}^{\,2})\) and \((A,\vec {b}^{\,3})\) as fourth-order embedded methods

B: Soliton Solutions

Different soliton solutions [20] of the KdV equation (32) are given below:

  1. (a)

    1-soliton solution:

    $$\begin{aligned} u(x,t)= \beta _1 {{\,\textrm{sech}\,}}^2(\xi _1) \;, \end{aligned}$$
    (37)

    where \(\beta _1 = 1\) and \(\xi _1 = \frac{\sqrt{\beta _1}(x-2 \beta _1 t)}{\sqrt{2}}\).

  2. (b)

    2-soliton solution:

    $$\begin{aligned} u(x, t) = -\frac{2(\beta _1-\beta _2)\left( \beta _2 {{\,\textrm{csch}\,}}^2(\xi _2)+\beta _1 {{\,\textrm{sech}\,}}^2(\xi _1)\right) }{\left( \sqrt{2 \beta _1} \tanh (\xi _1)-\sqrt{2 \beta _2} \coth (\xi _2)\right) ^2} \;, \end{aligned}$$
    (38)

    where \(\beta _1 = 0.5\), \(\beta _2 = 1\), \(\xi _1 = \frac{\sqrt{\beta _1}(x-2 \beta _1 t)}{\sqrt{2}}\), and \(\xi _2 = \frac{\sqrt{\beta _2}(x-2 \beta _2 t)}{\sqrt{2}}\).

  3. (c)

    3-soliton solution:

    $$\begin{aligned} u(x, t)= & {} \beta _1{{\,\textrm{sech}\,}}^2(\xi _1)- \nonumber \\{} & {} \frac{2(\beta _2-\beta _3)\left( \frac{2(\beta _3-\beta _1)\left( \beta _3 {{\,\textrm{csch}\,}}^2(\xi _3)-\beta _1 {{\,\textrm{sech}\,}}^2(\xi _1)\right) }{\left( \sqrt{2 \beta _3} \tanh (\xi _3)-\sqrt{2 \beta _1} \tanh (\xi _1)\right) ^2}-\frac{2(\beta _1-\beta _2)\left( \beta _2 {{\,\textrm{csch}\,}}^2(\xi _2)+\beta _1 {{\,\textrm{sech}\,}}^2(\xi _1)\right) }{\left( \sqrt{2 \beta _1} \tanh (\xi _1)-\sqrt{2 \beta _2} \coth (\xi _2)\right) ^2} \right) }{\left( \frac{2(\beta _1-\beta _2)}{\sqrt{2 \beta _1} \tanh (\xi _1)-\sqrt{2 \beta _2} \coth (\xi _2)}-\frac{2(\beta _3-\beta _1)}{\sqrt{2 \beta _3} \tanh (\xi _3)-\sqrt{2 \beta _1} \coth (\xi _1)}\right) ^2}, \nonumber \\ \end{aligned}$$
    (39)

    where \(\beta _1 = 0.4\), \(\beta _2 = 0.7\), \(\beta _3 = 1\), \(\xi _1 = \frac{\sqrt{\beta _1}(x-2 \beta _1 t)}{\sqrt{2}}\), \(\xi _2 = \frac{\sqrt{\beta _2}(x-2 \beta _2 t)}{\sqrt{2}}\), and \(\xi _3 = \frac{\sqrt{\beta _3}(x-2 \beta _3 t)}{\sqrt{2}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Ketcheson, D.I. Multiple-Relaxation Runge Kutta Methods for Conservative Dynamical Systems. J Sci Comput 97, 4 (2023). https://doi.org/10.1007/s10915-023-02312-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02312-4

Keywords

Mathematics Subject Classification

Navigation