Skip to main content
Log in

Discontinuous Galerkin Methods with Generalized Numerical Fluxes for the Vlasov-Viscous Burgers’ System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, semi-discrete numerical scheme for the approximation of the periodic Vlasov-viscous Burgers’ system is developed and analyzed. The scheme is based on the coupling of discontinuous Galerkin approximations for the Vlasov equation and local discontinuous Galerkin approximations for the viscous Burgers’ equation. Both these methods use generalized numerical fluxes. The proposed scheme is both mass and momentum conservative. Based on generalized Gauss–Radau projections, optimal rates of convergence in the case of smooth compactly supported initial data are derived. Finally, computational results confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The codes during the current study are available from the corresponding author on reasonable request.

References

  1. Brenner, S., Scott, R.: The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15. Springer Science & Business Media, London (2007)

  2. Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \(L^2\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comp. 86(303), 121–155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, Yao, Meng, Xiong, Zhang, Qiang: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comp. 86(305), 1233–1267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: Tvb Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. ii. General framework. Math. Comp. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W., Shu, C.-W., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM Math. Model. Numer. Anal. 51(6), 2213–2235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Ayuso Dios, B., Carrillo, J.A., Chi-Wang, S.: Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system. Kinet Relat Models 4(4), 955–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daniele Antonio, D.P., Alexandre, E.: Mathematical aspects of discontinuous Galerkin methods. In: Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012)

  10. Domelevo, K., Roquejoffre, J.-M.: Existence and stability of travelling wave solutions in a kinetic model of two-phase flows. Comm. Partial Differ. Equ. 24(1–2), 61–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goudon, T.: Asymptotic problems for a kinetic model of two-phase flow. Proc. Roy. Soc. Edinburgh Sect. A 131(6), 1371–1384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comp. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Jpn. J. Ind. Appl. Math. 15(1), 51–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han-Kwan, D., Miot, É., Moussa, A., Moyano, I.: Uniqueness of the solution to the 2D Vlasov–Navier–Stokes system. Rev. Mat. Iberoam. 36(1), 37–60 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopf, E.: The partial differential equation \(u_t+uu_x=\mu u_{xx}\). Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, H., Ploymaklam, N.: A local discontinuous Galerkin method for the Burgers–Poisson equation. Numer. Math. 129(2), 321–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, M., Wu, B., Meng, X.: Optimal error estimates of the discontinuous Galerkin method with upwind-biased fluxes for 2D linear variable coefficients hyperbolic equations. J. Sci. Comput. 83(1), 1–19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J., Zhang, D., Meng, X., Wu, B., Zhang, Q.: Discontinuous Galerkin methods for nonlinear scalar conservation laws: Generalized local Lax-Friedrichs numerical fluxes. SIAM J. Numer. Anal. 58(1), 1–20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of discontinuous Galerkin methods with upwind-biased fluxes for one dimensional linear hyperbolic equations with degenerate variable coefficients. J. Sci. Comput. 78(3), 1305–1328 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comp. 85(299), 1225–1261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50(5), 2336–2356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. J. O’ROURKE. Collective drop effects on vaporizing liquid sprays. PhD thesis, Princeton University, (1981)

  23. Ploymaklam, N., Kumbhar, P.M., Pani, A.K.: A priori error analysis of the local discontinuous Galerkin method for the viscous Burgers–Poisson system. Int. J. Numer. Anal. Model. 14(4–5), 784–807 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Ploymaklam, N.: A local discontinuous Galerkin method for the reduced Burgers–Poisson equation. Thai J. Math. 17(2), 515–525 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., N. Mex.(USA), (1973)

  26. Williams, F.A.: Combustion theory. CRC Press, Baco Ranton (1985)

    Google Scholar 

  27. Wang, H., Zhang, Q., Shu, C.-W.: Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81(3), 2080–2114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors are grateful to anonymous referees for their valuable comments and suggestions which help to improve the revised manuscript. K.K. and H.H. thank Laurent Desvillettes for introducing them to the fluid-kinetic equations modelling the thin sprays during the Junior Trimester Program on Kinetic Theory organised at the Hausdorff Research Institute for Mathematics, Bonn. K.K. and H.H. thank the Hausdroff Institute of Mathematics, Bonn, for hosting them during the Junior Trimester program on Kinetic theory (Summer of 2019) where this work was initiated. K.K. further acknowledges the financial support of the University Grants Commission (UGC), Government of India.

Funding

The second author acknowledges the financial support of the University Grants Commission (UGC), Government of India. the first and second authors thank the Hausdroff Institute of Mathematics, Bonn, for hosting them during the Junior Trimester program on Kinetic theory (Summer of 2019) where this work was initiated.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to prepare this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amiya K. Pani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A.

Appendix A.

The following lemma yields estimate for \(u_x\) in \(L^\infty \)-norm which helps us to prove the regularity result for viscous Burgers’ equation.

Lemma A.1

For a periodic function u with \(u \in C^2(I)\), there holds

$$\begin{aligned} \Vert u_x(t)\Vert _{L^\infty (I)} \le \sqrt{2}\,\Vert u_x(t)\Vert ^\frac{1}{2}_{L^2(I)}\Vert u_{xx}(t)\Vert _{L^2(I)}^\frac{1}{2}. \end{aligned}$$

Proof

As u is periodic. Hence, \(\int _I u_x\,{\textrm{d}}x = 0\) and there is some \(x_0 \in I\) such that \(u_x(x_0) = 0\)

$$\begin{aligned} \begin{aligned} |u_x|^2 = \left| \int _{x_0}^{x}\partial _x(u_x)^2\,{\textrm{d}}x\right| = 2\left| \int _{x_0}^{x}u_x\,u_{xx}\,{\textrm{d}}x\right| \le 2\,\Vert u_x\Vert _{L^2(I)}\,\Vert u_{xx}\Vert _{L^2(I)}. \end{aligned} \end{aligned}$$

Here, in first step use fundamental theorem of Calculus and in last step use the Cauchy-Schwarz inequality. After taking square root on both side and supremum over \(x \in I\) completes the proof. \(\square \)

The following lemma shows the regularity result for the solution of viscous Burgers’ equation.

Lemma A.2

Let \(\int _{{\mathbb R}}\int _I\,|v|^pf_0\,{\textrm{d}}x\,{\textrm{d}}v < \infty \) for \(0 \le p \le 3\) and \(u_0 \in H^1(I)\). Then

$$\begin{aligned} u \in L^2(0,T;H^2(I)) \cap L^\infty (0,T;H^1(I)) \cap H^1(0,T;L^2(I)). \end{aligned}$$
(A.1)

Proof

Multiplying Eq. (1.2) by \(- u_{xx}\) and integrate with respect to x to obtain

$$\begin{aligned} \frac{1}{2}\partial _t\Vert u_x\Vert ^2_{L^2(I)} + \epsilon \,\Vert u_{xx}\Vert ^2_{L^2(I)} = -\left( \rho V, u_{xx}\right) + \left( \rho u, u_{xx}\right) + \left( uu_x,u_{xx}\right) . \end{aligned}$$
(A.2)

A use of the Hölder inequality with Lemma A.1 and the Young’s inequality yields

$$\begin{aligned} \begin{aligned} \left( uu_x,u_{xx}\right)&\le \Vert u\Vert _{L^2(I)}\Vert u_x\Vert _{L^\infty (I)}\Vert u_{xx}\Vert _{L^2(I)}\\&\le \sqrt{2}\,\Vert u\Vert _{L^2(I)}\Vert u_x\Vert _{L^2(I)}^\frac{1}{2}\Vert u_{xx}\Vert ^\frac{3}{2}_{L^2(I)}\\&\le \epsilon ^{-3}\,\Vert u\Vert ^4_{L^2(I)}\Vert u_x\Vert ^2_{L^2(I)} + \frac{3\epsilon }{4}\Vert u_{xx}\Vert ^2_{L^2(I)}. \end{aligned} \end{aligned}$$
(A.3)

From Eq. (A.2) after a use of the Hölder inequality, the Young’s inequality and Eq. (A.3) with kickback argument, we obtain

$$\begin{aligned} \begin{aligned} \partial _t\Vert u_x\Vert ^2_{L^2(I)} + \frac{2\epsilon }{5}\,\Vert u_{xx}\Vert ^2_{L^2(I)} \lesssim \epsilon ^{-3}\left( \Vert \rho V\Vert ^2_{L^2(I)} + \Vert \rho \Vert ^2_{L^2(I)}\Vert u\Vert ^2_{L^\infty (I)} + \Vert u\Vert ^4_{L^2(I)}\Vert u_x\Vert ^2_{L^2(I)}\right) . \end{aligned} \end{aligned}$$

A use of Sobolev inequality and an integration in time from 0 to t leads to

$$\begin{aligned} \begin{aligned} \Vert u_x\Vert ^2_{L^2(I)} + \frac{2\epsilon }{5}\int _{0}^{t}\Vert u_{xx}\Vert ^2_{L^2(I)}\,{\textrm{d}}s&\lesssim \epsilon ^{-3}\,\Vert \rho V\Vert ^2_{L^2([0,T]\times I)}\\&\quad + \epsilon ^{-3}\,\int _{0}^{t}\left( \Vert \rho \Vert ^2_{L^2(I)}+ \Vert u\Vert ^4_{L^2(I)}\right) \Vert u_x\Vert ^2_{L^2(I)}\,{\textrm{d}}s \\&\lesssim \epsilon ^{-3}\,\Vert \rho V\Vert ^2_{L^2([0,T]\times I)} + \epsilon ^{-3}\,\left( \Vert \rho \Vert ^2_{L^\infty (0,T;L^2(I))} \right. \\&\quad \left. + \Vert u\Vert ^4_{L^\infty (0,T;L^2(I))}\right) \Vert u_x\Vert ^2_{L^2([0,T]\times I)}. \end{aligned} \end{aligned}$$

A use of (2.2) and (2.5) shows

$$\begin{aligned} \begin{aligned} \Vert u_x\Vert ^2_{L^2(I)} + \frac{2\epsilon }{5}\int _{0}^{t}\Vert u_{xx}\Vert ^2_{L^2(I)}\,{\textrm{d}}s \le C\,\epsilon ^{-3}. \end{aligned} \end{aligned}$$

After taking supremum over \(t \in [0,T]\), we obtain the first result.

Now, multiply Eq. (1.2) by \(u_t\) and integration with respect to x follows

$$\begin{aligned} \Vert u_t\Vert ^2_{L^2(I)} + \frac{\epsilon }{2}\partial _t\Vert u_x\Vert ^2_{L^2(I)} = \left( \rho V,u_t\right) + \left( \rho u, u_t\right) - \left( u\,u_x, u_t\right) . \end{aligned}$$

A use of the Hölder inequality with the Young’s inequality, kickback argument and an integration in time completes the rest of the proof. \(\square \)

As a consequence of above lemma, it follows that

$$\begin{aligned} \begin{aligned} u \in L^2(0,T;H^2(I)) \subset L^2(0,T;W^{1,\infty }(I)) \subset L^1(0,T;W^{1,\infty }(I)). \end{aligned} \end{aligned}$$

Here, in second step use Sobolev inequality and in third step use the Hölder inequality.

The following result is on the propagation of velocity moments which is crucial for the proof of existence and uniqueness of strong solution.

Lemma A.3

Let \(u \in L^1(0,T;W^{1,\infty }(I))\) and let \(f_0 \ge 0\) be such that

$$\begin{aligned} \int _{{\mathbb R}}\int _I\,\vert v\vert ^k\left\{ f_0 + \vert \partial _xf_0\vert ^2 + \vert \partial _vf_0\vert ^2\right\} \,{\textrm{d}}x\,{\textrm{d}}v \le C, \end{aligned}$$

for \(k \ge 0\). Then, the solution f of the Vlasov equation satisfies

$$\begin{aligned} \int _{{\mathbb R}}\int _I\,\vert v\vert ^k\left\{ f + \vert \partial _xf\vert ^2 + \vert \partial _vf\vert ^2\right\} \,{\textrm{d}}x\,{\textrm{d}}v \le C, \end{aligned}$$

for \(k \ge 0\) and for all \(t>0\).

Proof

Consider the equation for \(\partial _xf\)

$$\begin{aligned} \partial _t\partial _xf + v\partial _x^2f + \partial _v\left( \partial _xu\, f\right) + \partial _v\left( \left( u - v\right) \partial _xf\right) = 0. \end{aligned}$$

Multiplying the above equation by \(\left( 1 + |v|^k\right) \partial _xf\) and integrating with respect to xv yields

$$\begin{aligned} \frac{1}{2}\frac{{\textrm{d}}}{{\textrm{d}}t}\int _{{\mathbb R}}\int _I \left( 1 + \vert v\vert ^k\right) \left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v = I_1 + I_2 + I_3 \end{aligned}$$

where

$$\begin{aligned} I_1= & {} -\int _{{\mathbb R}}\int _I\left( 1 + |v|^k\right) \partial _xu\,\partial _vf\,\partial _xf\,{\textrm{d}}x\,{\textrm{d}}v,\\ I_2= & {} \int _{{\mathbb R}}\int _I\left( 1 + |v|^k\right) \left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v \end{aligned}$$

and

$$\begin{aligned} I_3 = -\frac{1}{2}\int _{{\mathbb R}}\int _I\left( 1 + |v|^k\right) \left( u - v\right) \partial _v\left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned}$$

After using the Young’s inequality in \(I_1\), we obtain

$$\begin{aligned} I_1 \le \Vert u_x\Vert _{L^\infty (I)}\int _{{\mathbb R}}\int _I\left( 1 + |v|^k\right) \left( \left| \partial _xf\right| ^2 + \left| \partial _vf\right| ^2\right) \,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned}$$

An integration by parts yields

$$\begin{aligned} I_3 = -\frac{1}{2}\int _{{\mathbb R}}\int _I\left( 1 + |v|^k\right) \left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v + I_4 \end{aligned}$$

with

$$\begin{aligned} I_4 = \frac{k}{2}\int _{{\mathbb R}}\int _I\,\vert v\vert ^{k-2}v\left( u - v\right) \left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned}$$

A use of the Young’s inequality shows

$$\begin{aligned} \begin{aligned} I_4&\le \frac{k}{2}\Vert u\Vert _{L^\infty (I)}\int _{{\mathbb R}}\int _I\vert v\vert ^{k-1}\left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v + \frac{k}{2}\int _{{\mathbb R}}\int _I\,\vert v\vert ^k\left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v \\&\le \frac{k}{2}\Vert u\Vert _{L^\infty (I)}\int _{{\mathbb R}}\int _I\left( \frac{k-1}{k}\vert v\vert ^{k} + \frac{1}{k}\right) \left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v + \frac{k}{2}\int _{{\mathbb R}}\int _I\,\vert v\vert ^k\left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v \\&\le C\left( 1 + \Vert u\Vert _{L^\infty (I)}\right) \int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left| \partial _xf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned} \end{aligned}$$

Next, consider the equation for \(\partial _vf\)

$$\begin{aligned} \partial _t\partial _vf + v\partial _x\partial _vf + \partial _xf - \partial _vf + \partial _v\left( \left( u - v\right) \partial _vf\right) = 0. \end{aligned}$$

Multiplying the above equation by \(\left( 1 + \vert v\vert ^k\right) \partial _vf\) and integrating with respect to xv yields

$$\begin{aligned} \frac{1}{2}\int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v = I_5 + I_6 + I_7 \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} I_5&= -\int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \partial _xf\,\partial _vf\,{\textrm{d}}x\,{\textrm{d}}v\\ I_6&= \int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v\\ I_7&= -\int _{{\mathbb R}}\int _I\partial _v\left( \left( u - v\right) \partial _vf\right) \left( 1 + \vert v\vert ^k\right) \partial _vf\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned} \end{aligned}$$

After using the Young’s inequality in \(I_5\), we obtain

$$\begin{aligned} I_5 \le \int _{{\mathbb R}}\int _I\left( 1 + |v|^k\right) \left( \left| \partial _xf\right| ^2 + \left| \partial _vf\right| ^2\right) \,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned}$$

An integration by parts yields

$$\begin{aligned} I_7 = \int _{{\mathbb R}}\int _I \left( 1 + \vert v\vert ^k\right) \left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v + I_8 \end{aligned}$$

with

$$\begin{aligned} I_8 = -\frac{1}{2}\int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left( u - v\right) \partial _v\left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned}$$

An integration by parts shows

$$\begin{aligned} I_8 = -\frac{1}{2}\int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v - \frac{k}{2}\int _{{\mathbb R}}\int _I\,\vert v\vert ^k\left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v + I_9 \end{aligned}$$

with

$$\begin{aligned} I_9 = \frac{k}{2}\int _{{\mathbb R}}\int _I\,\vert v\vert ^{k-2}vu\,\vert \partial _vf\vert ^2\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned}$$

A use of the Young’s inequality leads to

$$\begin{aligned} \begin{aligned} I_9&\le \Vert u\Vert _{L^\infty (I)}\frac{k}{2}\int _{{\mathbb R}}\int _I\,\vert v\vert ^{k-1}\left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v\\&\le \Vert u\Vert _{L^\infty (I)}\frac{k}{2}\int _{{\mathbb R}}\int _I\left( \frac{k-1}{k}\vert v\vert ^{k} + \frac{1}{k}\right) \left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v \\&\le C\int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left| \partial _vf\right| ^2\,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned} \end{aligned}$$

Altogether, we obtain

$$\begin{aligned} \begin{aligned}&\frac{{\textrm{d}}}{{\textrm{d}}t}\left( \int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left( \left| \partial _xf\right| ^2 + \left| \partial _vf\right| ^2\right) \,{\textrm{d}}x\,{\textrm{d}}v\right) \le C\left( 1 + \Vert u\Vert _{W^{1,\infty }(I)}\right) \\&\quad \int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left( \left| \partial _x f\right| ^2 + \left| \partial _vf\right| ^2\right) \,{\textrm{d}}x\,{\textrm{d}}v. \end{aligned} \end{aligned}$$

Let \( F(t) = \int _{{\mathbb R}}\int _I\left( 1 + \vert v\vert ^k\right) \left( \left| \partial _xf\right| ^2 + \left| \partial _vf\right| ^2\right) \,{\textrm{d}}x\,{\textrm{d}}v\), then

$$\begin{aligned} \begin{aligned} F'(t) \le C\left( 1 + \Vert u(t,x)\Vert _{W^{1,\infty }(I)}\right) F(t) \end{aligned} \end{aligned}$$

this implies

$$\begin{aligned} F(t) \le CF(0)e^{\Vert u\Vert _{L^1(0,T;W^{1,\infty }(I))}}. \end{aligned}$$

This completes our proof. \(\square \)

Theorem A.4

(Existence and Uniqueness of strong solution) Let the initial data \(\left( f_0,u_0\right) \) be such that

$$\begin{aligned}{} & {} f_0 \in L^1(I\times {\mathbb R})\cap L^\infty (I\times {\mathbb R})\cap H^1(I\times {\mathbb R}), \quad f_0 \ge 0,\\{} & {} \quad \int _{{\mathbb R}}\int _I\,\vert v\vert ^p\left\{ f_0 + \left| \partial _xf_0\right| ^2 + \left| \partial _vf_0\right| ^2\right\} \,{\textrm{d}}x\,{\textrm{d}}v \le C, \end{aligned}$$

for \(0 \le p \le 4\) and \(u_0 \in H^1(I)\). Then, there exists a unique global-in-time strong solution \(\left( f,u\right) \) to the Vlasov-viscous Burgers’ system (1.1)–(1.2).

Proof

Let \(0< T < \infty \) and set \(X = L^\infty (0,T;H^1(I))\), with norm

$$\begin{aligned} \Vert u\Vert ^2_{X} = \sup _{t \in [0,T]}\left( \int _I\left( u^2 + |\partial _x u|^2\right) \,{\textrm{d}}x\right) . \end{aligned}$$

We now consider the map

$$\begin{aligned} \begin{aligned}&\mathcal {T} : X \rightarrow X\\&\quad u^* \longmapsto u = \mathcal {T}(u^*) \end{aligned} \end{aligned}$$
(A.4)

defined by the following scheme.

  • Solve the Vlasov equation

    $$\begin{aligned} \partial _t f + v\,\partial _x f + \partial _v \left( \left( u^* - v\right) f\right) = 0, \end{aligned}$$
    (A.5)

    with initial data \(f_0\).

  • Solve the viscous Burgers’ equation

    $$\begin{aligned} \begin{aligned} \left( u_t,\phi \right) + \left( uu_x, \phi \right) + \epsilon \left( u_x,\phi _x\right) = \left( \rho V - \rho u, \phi \right) , \quad \forall \,\, \phi \in H^1(I) \end{aligned} \end{aligned}$$
    (A.6)

    with initial data \(u_0\). Here \(\rho \) and \(\rho V\) are the local density and the momentum associated with the solution f of (A.5).

To begin with, we show that the above map \(\mathcal {T}\) is well-defined. For a given \(u^* \in X\) and a given initial datum \(f_0\), the Vlasov equation (A.5) is uniquely solvable (see Lemma A.5 below for details). Having solved (A.5) for \(f(u^*)\), one gather that the corresponding local density \(\rho \in L^\infty \) (see Lemma 2.5) and the corresponding momentum \(\rho V \in L^2\) (see Lemma 2.3). Hence, classical theory for the viscous Burgers’ problem [15] yields a unique solution \(u \in X\) for the problem (A.6). Thus, the map \(\mathcal {T}: X \rightarrow X\) that takes \(u^*\) to \(\mathcal {T}(u^*) = u\) is well-defined. Our next step in the proof is to show that \(\mathcal {T}\) is a contraction map and that has been demonstrated in Lemma A.6 below. Therefore, an application of the Banach fixed-point theorem ensures the existence of a unique solution (fu) in a short time interval \((0,T^0)\). As the solution (fu) stays bounded at \(t = T^0\), thanks to a priori estimates, we can employ continuation argument to extend the interval of existence upto (0, T]. As T is arbitrary, we get global-in-time well-posedness of our system. \(\square \)

Next we deal with Lemmata A.5 and A.6 which played a crucial role in the above proof.

Lemma A.5

Let \(u^* \in X\) and let \(f_0 \in L^1(I\times {\mathbb R})\cap L^\infty (I\times {\mathbb R})\). Then, there exists a unique solution \(f \in L^\infty (0,T;L^1(I\times {\mathbb R})\cap L^\infty (I\times {\mathbb R}))\) to (A.5).

Proof

Note that (A.5) can be rewritten as

$$\begin{aligned} \partial _t f + b \cdot \nabla _{x,v}f - f =0, \end{aligned}$$

where \(b = (v, u^*(t,x) - v)\), which lies in

$$\begin{aligned} L^1(0,T;H^1(I \times (-K,K))), \quad 0< K < \infty . \end{aligned}$$

Note that div\(_{x,v}b = -1 \in L^\infty ((0,T) \times \Omega )\). Furthermore, \(|b|/(1 + |v|)\) is bounded. This setting appeals to the general results in [8]. In particular, we can apply [8, Corollaries II-1 and II-2, p.518] to arrive at the existence of the unique solution. \(\square \)

Lemma A.6

The map defined by (A.5) and (A.6) is a contraction map.

Proof

Let for given \(u_i^*\) there exist a unique solution \(f_i\) for equation (A.5). Define \(\bar{u} = u_1 - u_2, \bar{u}^* = u_1^* - u_2^*\) and \(\bar{f} = f_1 - f_2\), then from (A.5) and (A.6) we find that

$$\begin{aligned} \bar{f}_t + v\bar{f}_x + \partial _v\left( \bar{u}^*f_1 + u_2^*\bar{f} - v\bar{f}\right) = 0, \quad \text{ with } \quad \bar{f}(0,x,v) = 0, \end{aligned}$$
(A.7)

and

$$\begin{aligned} \left( \bar{u}_t, \phi \right) _I - \epsilon \,\left( \bar{u}_{xx}, \phi \right) _I = \left( \int _{{\mathbb R}}\left( v\bar{f} + u_2\bar{f} - \bar{u}f_1\right) \,{\textrm{d}}v, \phi \right) _I - \left( \left( \bar{u}\partial _xu_1 + u_2\bar{u}_x\right) , \phi \right) _I, \end{aligned}$$
(A.8)

with \(\quad \bar{u}(0,x) = 0.\)

Choose \(\phi = \bar{u} - \bar{u}_{xx}\) in (A.8) to obtain

$$\begin{aligned} \begin{aligned}&\frac{1}{2}\partial _t\Vert \bar{u}\Vert ^2_{L^2(I)} + \frac{1}{2}\partial _t\Vert \bar{u}_x\Vert ^2_{L^2(I)} + \epsilon \Vert \bar{u}_x\Vert ^2_{L^2(I)} + \epsilon \,\Vert \bar{u}_{xx}\Vert ^2_{L^2(I)}\\&\quad = \left( \int _{{\mathbb R}}\left( v\bar{f} + u_2\bar{f} - \bar{u}f_1\right) \,{\textrm{d}}v, \bar{u} - \bar{u}_{xx}\right) _I\\&\quad - \left( \left( \bar{u}\partial _xu_1 + u_2\bar{u}_x\right) , \bar{u} - \bar{u}_{xx}\right) _I \end{aligned} \end{aligned}$$

a use of the Hölder inequality with the Young’s inequality, a kickback argument and integration in time yields

$$\begin{aligned} \begin{aligned}&\Vert \bar{u}\Vert ^2_{X} + \epsilon \Vert \bar{u}_x\Vert ^2_{L^2([0,T]\times I)} + \epsilon \,\Vert \bar{u}_{xx}\Vert _{L^2([0,T]\times I)}^2 \\&\quad \le 4\epsilon ^{-1}\,\left\| \int _{{\mathbb R}}\left( v\bar{f} + u_2\bar{f} - \bar{u}f_1\right) \,{\textrm{d}}v\right\| ^2_{L^2([0,T]\times I)}\\&\quad + 4\epsilon ^{-1}\,\Vert \bar{u}\partial _xu_1 + u_2\bar{u}_x\Vert ^2_{L^2([0,T] \times I)} + \epsilon T\Vert \bar{u}\Vert ^2_X. \end{aligned} \end{aligned}$$
(A.9)

Now, the Hölder inequality followed by Sobolev imbedding shows

$$\begin{aligned} \begin{aligned}&\left\| \int _{{\mathbb R}}\left( v\bar{f} + u_2\bar{f} - \bar{u}f_1\right) \,{\textrm{d}}v\right\| _{L^2([0,T]\times I)} \le \left\| \int _{{\mathbb R}}v\bar{f}\,{\textrm{d}}v\right\| _{L^2([0,T]\times I)} \\&\quad + T\Vert \bar{u}\Vert _{X}\Vert m_0f_1\Vert _{L^\infty (0,T;L^2(I))} + \Vert u_2\Vert _{X }\Vert m_0\bar{f}\Vert _{L^2([0,T] \times I)}, \end{aligned} \end{aligned}$$
(A.10)

and

$$\begin{aligned} \begin{aligned} \Vert \bar{u}\partial _xu_1 + u_2\bar{u}_x\Vert _{L^2([0,T]\times I)}&\le \Vert \bar{u}\Vert _{L^\infty ([0,T]\times I)}\Vert \partial _xu_1\Vert _{L^2([0,T]\times I)} \\&\quad + \Vert u_2\Vert _{L^2([0,T];L^\infty (I))}\Vert \bar{u}\Vert _{L^\infty ([0,T];H^1(I))} \\&\le T^\frac{1}{2}\left( \Vert u_1\Vert _{X} + \Vert u_2\Vert _X\right) \Vert \bar{u}\Vert _{X}. \end{aligned} \end{aligned}$$
(A.11)

For a sufficiently small \(T > 0\)

$$\begin{aligned} \begin{aligned} 4\epsilon ^{-1}\,T\left( \Vert m_0f_1\Vert ^2_{L^\infty (0,T;L^2(I))} + \Vert u_1\Vert ^2_{X} + \Vert u_2\Vert ^2_X + \frac{\epsilon ^2}{4}\,\right) \le \frac{1}{2}. \end{aligned} \end{aligned}$$
(A.12)

Using Eqs. (A.9)–(A.12), we obtain

$$\begin{aligned} \Vert \bar{u}\Vert _{X}^2 \le C\left\| \int _{{\mathbb R}}v\bar{f}\,{\textrm{d}}v\right\| ^2_{L^2([0,T]\times I)} + C\Vert u_2\Vert ^2_{X}\Vert m_0\bar{f}\,{\textrm{d}}v\Vert ^2_{L^2([0,T] \times I)}. \end{aligned}$$
(A.13)

Now, a similar calculation as in proof of Lemma 2.3 shows

$$\begin{aligned} \left\| \int _{{\mathbb R}}v\bar{f}\,{\textrm{d}}v\right\| _{L^2([0,T] \times I)} \le C\int _0^T\int _{{\mathbb R}}\int _I|v|^3|\bar{f}|\,{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t, \end{aligned}$$
(A.14)

and

$$\begin{aligned} \left\| \int _{{\mathbb R}}\bar{f}\,{\textrm{d}}v\right\| _{L^2([0,T]\times I)} \le C\int _0^T\int _{{\mathbb R}}\int _I|v||\bar{f}|\,{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t. \end{aligned}$$
(A.15)

Multiplying Eq. (A.7) by \(|v|^k\frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\); \(k \ge 1\), we obtain

$$\begin{aligned} \begin{aligned}&|v|^k\partial _t\left( \sqrt{\bar{f}^2 + \delta }\right) + |v|^k\,v\,\partial _x\left( \sqrt{\bar{f}^2 + \delta }\right) + \bar{u}^*|v|^k\frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\,\partial _vf_1 \\&\qquad + u_2^*|v|^k\,\partial _v\left( \sqrt{\bar{f}^2 + \delta }\right) - |v|^k\,\frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\,\partial _v\left( v\bar{f}\,\right) = 0. \end{aligned} \end{aligned}$$

Then, an integrate with respect to xv yields

$$\begin{aligned} \begin{aligned}&\partial _t\int _{\mathbb R}\int _I |v|^k\left( \sqrt{\bar{f}^2 + \delta }\right) \,{\textrm{d}}x\,{\textrm{d}}v - k\int _{\mathbb R}\int _I\bar{u}^*\,|v|^{k-2}v\,\frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\,f_1\,{\textrm{d}}x\,{\textrm{d}}v \\&\qquad - \int _{\mathbb R}\int _I|v|^k\,\bar{u}^*\,f_1\,\partial _v\left( \frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\right) \,{\textrm{d}}x\,{\textrm{d}}v - k\int _{\mathbb R}\int _I |v|^{k-2}v\,u^*_2\,\left( \sqrt{\bar{f}^2 + \delta }\right) \,{\textrm{d}}x\,{\textrm{d}}v \\&\qquad + k\int _{\mathbb R}\int _I|v|^k\,\frac{\bar{f}^2}{\sqrt{\bar{f}^2 + \delta }} \,{\textrm{d}}x\,{\textrm{d}}v + \int _{\mathbb R}\int _I |v|^k\partial _v\left( \frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\right) v\bar{f}\,{\textrm{d}}x\,{\textrm{d}}v = 0. \end{aligned} \end{aligned}$$

A use of Sobolev inequality with integration in time shows

$$\begin{aligned} \begin{aligned}&\sup _{t \in [0,T]}\int _{{\mathbb R}}\int _I|v|^k\left( \sqrt{\bar{f}^2 + \delta }\right) \,{\textrm{d}}x\,{\textrm{d}}v + k\int _0^T\int _{{\mathbb R}}\int _I|v|^k\frac{\bar{f}^2}{\sqrt{\bar{f}^2 + \delta }}\,{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t \\&\quad \le \int _0^Tk\Vert \bar{u}^*\Vert _{H^1(I)}\Vert m_{k-1}f_1\Vert _{L^1(I)} \,{\textrm{d}}t + |T_k^1| + |T^2_k| \\&\qquad + \int _{0}^T k\Vert u_2^*\Vert _{H^1(I)}\left\| \int _{{\mathbb R}}|v|^{k-1}\left( \sqrt{\bar{f}^2 + \delta }\right) \,{\textrm{d}}v\right\| _{L^1(I)}\,{\textrm{d}}t \\&\quad \le T\Vert \bar{u}^*\Vert _{X}\Vert m_{k-1}f_1\Vert _{L^\infty (0,T;L^1(I))} + |T_k^1| + |T^2_k| \\&\qquad + T\Vert u_2^*\Vert _{X}\left\| \int _{{\mathbb R}}|v|^{k-1}\left( \sqrt{\bar{f}^2 + \delta }\right) \,{\textrm{d}}v\right\| _{L^\infty (0,T;L^1(I))}. \end{aligned} \end{aligned}$$
(A.16)

Here,

$$\begin{aligned} T^1_k= & {} \int _0^T\int _{\mathbb R}\int _I|v|^k\,\bar{u}^*\,f_1\,\partial _v\left( \frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\right) \,{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t\\= & {} \int _0^T\int _{\mathbb R}\int _I|v|^k\,\bar{u}^*\,f_1\,\frac{\delta \,\bar{f}_v}{\left( \bar{f}^2+\delta \right) ^\frac{3}{2}}{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t \end{aligned}$$

and

$$\begin{aligned} T^2_k = \int _0^T\int _{\mathbb R}\int _I |v|^k\partial _v\left( \frac{\bar{f}}{\sqrt{\bar{f}^2 + \delta }}\right) v\bar{f}\,{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t = \int _0^T\int _{\mathbb R}\int _I |v|^k v\bar{f}\frac{\delta \,\bar{f}_v}{\left( \bar{f}^2+\delta \right) ^\frac{3}{2}}\,{\textrm{d}}x\,{\textrm{d}}v\,{\textrm{d}}t. \end{aligned}$$

As \(\bar{f} \in L^1(0,T;L^\infty (I\times {\mathbb R}))\) and as fourth order velocity moments of \(\left| \partial _vf\right| ^2\) and \(\bar{f}\) are bounded (see Lemma A.3), \(\left| T_k^1\right| \rightarrow 0\) and \(\left| T_k^2\right| \rightarrow 0\) as \(\delta \rightarrow 0\) for \(k = 1,2,3\). Next, we multiply Eq. (A.7) by \(\frac{\bar{f}}{\sqrt{\bar{f}^2+\delta }}\) and integrate with respect to xv and t variables to obtain

$$\begin{aligned} \begin{aligned}&\int _{\mathbb R}\int _I\sqrt{\bar{f}^2+\delta }\,{\textrm{d}}x\,{\textrm{d}}v - \int _0^T\int _{\mathbb R}\int _I\frac{\delta \,\bar{f}_v}{\left( \bar{f}^2+\delta \right) ^\frac{3}{2}}\left( \bar{u}^*f_1 + u_2^*\bar{f} - v\bar{f}\right) \,{\textrm{d}}x\,{\textrm{d}}v\\&\quad = \int _{\mathbb R}\int _I\sqrt{\bar{f}^2(0,x,v)+\delta }\,{\textrm{d}}x\,{\textrm{d}}v, \end{aligned} \end{aligned}$$

with \(\bar{f}(0,x,v) = 0\). Arguing as we did with the \(T_k^1\) and \(T_k^2\) terms, in the \(\delta \rightarrow 0\) limit in above equation, we arrive at

$$\begin{aligned} \int _{\mathbb R}\int _I|\bar{f}|\,{\textrm{d}}x\,{\textrm{d}}v = 0. \end{aligned}$$
(A.17)

A use of Eq. (A.16) for \(k = 1\) in Eq. (A.15) and \(\delta \rightarrow 0\) shows

$$\begin{aligned} \left\| \int _{{\mathbb R}}\bar{f}\,{\textrm{d}}v\right\| _{L^2([0,T]\times I)} \le T\Vert \bar{u}^*\Vert _{X}\Vert f_0\Vert _{L^1(\Omega )}. \end{aligned}$$
(A.18)

Using Eq. (A.14) and by induction from Eq. (A.16), we deduce

$$\begin{aligned} \begin{aligned} \left\| \int _{{\mathbb R}}v\bar{f}\,{\textrm{d}}v\right\| _{L^2([0,T]\times I)}&\lesssim T\Vert \bar{u}^*\Vert _{X}\left( \Vert m_2f_1\Vert _{L^\infty (0,T;L^1(I))} + \Vert u_2^*\Vert _{X}\Vert m_1f_1\Vert _{L^\infty (0,T;L^1(I))}\right. \\&\quad \left. + \Vert u_2^*\Vert ^2_{X}\Vert m_0f_1\Vert _{L^\infty (0,T;L^1(I))}\right) . \end{aligned} \end{aligned}$$
(A.19)

Using (A.18)–(A.19) for a sufficiently small \(T > 0\) from (A.13), we obtain

$$\begin{aligned} \Vert \bar{u}\Vert _{X} \le \alpha _0\Vert \bar{u}^*\Vert _{X}, \quad \alpha _0 < 1. \end{aligned}$$

This shows that \(\mathcal {T}\) is a contraction map. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutridurga, H., Kumar, K. & Pani, A.K. Discontinuous Galerkin Methods with Generalized Numerical Fluxes for the Vlasov-Viscous Burgers’ System. J Sci Comput 96, 7 (2023). https://doi.org/10.1007/s10915-023-02230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02230-5

Keywords

AMS Subject Classification

Navigation