Skip to main content
Log in

An Ultra-weak Local Discontinuous Galerkin Method with Generalized Numerical Fluxes for the KdV–Burgers–Kuramoto Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study an ultra-weak local discontinuous Galerkin (UWLDG) method for the KdV–Burgers–Kuramoto (KBK) type equation. While the standard UWLDG method is a powerful tool for efficiently solving high order equations, it faces challenges when applied to equations involving multiple spatial derivatives. We adopt a novel approach to discretize lower order spatial derivatives, enhancing the versatility of the UWLDG method. Additionally, we adopt generalized numerical fluxes to enhance the flexibility and extendibility of the UWLDG scheme. We introduce a class of global projections with multiple parameters to analyze the properties of these generalized numerical fluxes. With the aid of the special discretization approach and the global projections, we establish both stability and optimal error estimates of proposed method. The validity of our theoretical findings is demonstrated through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Alimirzaluo, E., Nadjafikhah, M.: Some exact solutions of kdv-burgers-kuramoto equation. J. Phys. Commun. 3(3), 035025 (2019)

    Article  Google Scholar 

  2. Baccouch, M.: A superconvergent ultra-weak local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems. Numer. Algorithms 92(4), 1983–2023 (2023)

    Article  MathSciNet  Google Scholar 

  3. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comp. 82(283), 1401–1432 (2013)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  5. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51(2), 467–486 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, A., Li, F., Cheng, Y.: An ultra-weak discontinuous Galerkin method for Schrödinger equation in one dimension. J. Sci. Comput. 78(2), 772–815 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comp. 86(305), 1233–1267 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comp. 77(262), 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

  10. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)

    MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  12. Frean, D.J., Ryan, J.K.: Superconvergence and the numerical flux: a study using the upwind-biased flux in discontinuous Galerkin methods. Commun. Appl. Math. Comput. 2(3), 461–486 (2020)

    Article  MathSciNet  Google Scholar 

  13. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  Google Scholar 

  14. Huang, J., Liu, Y., Liu, Y., Tao, Z., Cheng, Y.: A class of adaptive multiresolution ultra-weak discontinuous Galerkin methods for some nonlinear dispersive wave equations. SIAM J. Sci. Comput. 44(2), A745–A769 (2022)

    Article  MathSciNet  Google Scholar 

  15. Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation: a bridge between PDEs and dynamical systems. pp. 113–126 (1986). Solitons and coherent structures (Santa Barbara, Calif., 1985)

  16. Kawahara, T.: Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381–383 (1983)

    Article  Google Scholar 

  17. Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346–367 (1978)

    Article  Google Scholar 

  18. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations. Math. Comp. 89(325), 2085–2111 (2020)

    Article  MathSciNet  Google Scholar 

  19. Li, J., Zhang, D., Meng, X., Wu, B., Zhang, Q.: Discontinuous Galerkin methods for nonlinear scalar conservation laws: generalized local Lax-Friedrichs numerical fluxes. SIAM J. Numer. Anal. 58(1), 1–20 (2020)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Guan, J., Feng, Z.: Hopf bifurcation analysis of KdV-Burgers-Kuramoto chaotic system with distributed delay feedback. Int. J. Bifurc. Chaos Appl. Sci. Eng. 29(1), 1950011, 13 (2019)

  21. Liu, Y., Tao, Q., Shu, C.W.: Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. ESAIM Math. Model. Numer. Anal. 54(6), 1797–1820 (2020)

    Article  MathSciNet  Google Scholar 

  22. Meng, X., Shu, C.W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comp. 85(299), 1225–1261 (2016)

    Article  MathSciNet  Google Scholar 

  23. Meng, X., Shu, C.W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50(5), 2336–2356 (2012)

    Article  MathSciNet  Google Scholar 

  24. Min, L., Yang, X., Ye, D.: Well-posedness for a fourth order nonlinear equation related to image processing. Nonlinear Anal. Real World Appl. 17, 192–202 (2014)

    Article  MathSciNet  Google Scholar 

  25. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. rep., Los Alamos Scientific Lab., N. Mex. (USA) (1973)

  26. Shu, C.W.: Different formulations of the discontinuous galerkin method for the viscous terms. In: Shi, Z.-C., Mu, M., Xue, W., Zou, J. (eds.) Advances in Scientific Computing, pp. 144–155. Science Press, Beijing, China (2001)

    Google Scholar 

  27. Shu, C.W.: Discontinuous Galerkin method for time-dependent problems: survey and recent developments. In: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, IMA Vol. Math. Appl., vol. 157, pp. 25–62. Springer, Cham (2014)

  28. Sivashinsky, G.I.: On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39(1), 67–82 (1980)

    Article  MathSciNet  Google Scholar 

  29. Tadmor, E.: The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17(4), 884–893 (1986)

    Article  MathSciNet  Google Scholar 

  30. Tao, Q., Cao, W., Zhang, Z.: Superconvergence analysis of the ultra-weak local discontinuous Galerkin method for one dimensional linear fifth order equations. J. Sci. Comput. 88(3), Paper No. 63, 38 (2021)

  31. Tao, Q., Xu, Y., Shu, C.W.: An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comp. 89(326), 2753–2783 (2020)

    Article  MathSciNet  Google Scholar 

  32. Tao, Q., Xu, Y., Shu, C.W.: A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. J. Comput. Appl. Math. 386, Paper No. 113230, 16 (2021)

  33. Wang, K., Chen, S., Du, Z.: Dynamics of travelling waves to KdV-Burgers-Kuramoto equation with Marangoni effect perturbation. Qual. Theory Dyn. Syst. 21(4), Paper No. 132, 30 (2022)

  34. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195(25–28), 3430–3447 (2006)

    Article  MathSciNet  Google Scholar 

  35. Xu, Y., Zhang, Q.: Superconvergence analysis of the Runge-Kutta discontinuous Galerkin method with upwind-biased numerical flux for two-dimensional linear hyperbolic equation. Commun. Appl. Math. Comput. 4(1), 319–352 (2022)

    Article  MathSciNet  Google Scholar 

  36. Xu, Y., Zhao, D., Zhang, Q.: Local error estimates for Runge-Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with discontinuous initial data. J. Sci. Comput. 91(1), Paper No. 11, 30 (2022)

  37. Yan, J., Shu, C.W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    Article  MathSciNet  Google Scholar 

  38. Yan, J., Shu, C.W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 27–47 (2002)

Download references

Funding

The research of the second author was supported by the NSFC grant U21B2075 and 12271130 and the Fundamental Research Funds for the Central Universities grant 2022FRFK060014. The work of the third author was supported by the NSFC grant 12101158, the Fellowship of China Postdoctoral Science Foundation grant 2021M701010 and the Fundamental Research Funds for the Central Universities grant 2022FRFK060029. The research of the forth author was supported by the NSFC grant 11971131 and 61873071, and the Natural Sciences Foundation of Heilongjiang Province grant ZD2022A001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the second author was supported by the NSFC grant U21B2075 and 12271130 and the Fundamental Research Funds for the Central Universities grant 2022FRFK060014. The work of the third author was supported by the NSFC grant 12101158, the Fellowship of China Postdoctoral Science Foundation grant 2021M701010 and the Fundamental Research Funds for the Central Universities grant 2022FRFK060029. The research of the forth author was supported by the NSFC grant 11971131 and 61873071, and the Natural Sciences Foundation of Heilongjiang Province grant ZD2022A001.

A Some Detailed Proofs for the Global Projections

A Some Detailed Proofs for the Global Projections

1.1 A.1 Determinant of \(\mathcal {A}\)

$$\begin{aligned} \det \left( \mathcal {A}\right) = \prod _{j=1}^{N} \det \left( A+\omega _N^jB\right) , \quad \omega _N=e^{\frac{2\pi \text {i}}{N}}, \end{aligned}$$

where AB are \(2\times 2\) matrices, \(\mathcal {A}=\textrm{circ}(A,B,\textbf{0},\cdots ,\textbf{0})\).

Proof

We first introduce the following matrix

$$\begin{aligned} \mathcal {W}=\left( \begin{array}{ccccc} 1 &{} 1 &{} 1 &{} \cdots &{} 1 \\ 1 &{} \omega _N &{} \omega _N^2 &{} \cdots &{} \omega _N^{N-1} \\ 1 &{} \omega _N^2 &{} \omega _N^4 &{} \cdots &{} \omega _N^{2(N-1)} \\ \vdots &{} \vdots &{} \vdots &{} &{} \vdots \\ 1 &{} \omega _N^{N-1} &{} \omega _N^{2(N-1)} &{} \cdots &{} \omega _N^{(N-1)(N-1)} \end{array} \right) \otimes \textbf{I}_2, \end{aligned}$$

which is a quasi-Vandermonde matrix, it is non-singular for it is the Kronecker product of two invertible matrices. Then we can check the equality

$$\begin{aligned} \mathcal {A}\mathcal {W}=\mathcal {W}\varLambda , \end{aligned}$$

where \(\varLambda =\text {diag}(A+B,A+\omega _NB,\cdots ,A+\omega _N^{N-1}B)\) is a quasi-diagonal matrix. Thus \(\det \left( \mathcal {A}\right) = \det \left( \varLambda \right) = \prod _{j=1}^{N} \det \left( A+\omega _N^jB\right) \).\(\square \)

1.2 A.2 Invertibility of \(A+\omega B\)

Let \(k\ge 1\), \(\omega \in \mathbb {C}\) with \(|\omega |=1\), and \((\theta ,\mu ) \in \mathbb {A}_2(k)\), then \(\det \left( A+\omega B\right) \ne 0\), where A and B are defined in (3.10).

Proof

We can trivially compute that

$$\begin{aligned} \det \left( A+\omega B\right) = 2\left( \tilde{\theta }\tilde{\mu }\omega ^2 + (-1)^{k-1}k(\theta \tilde{\mu }+\tilde{\theta }\mu )\omega + \theta \mu \right) . \end{aligned}$$

Denote \(P(\omega )=\frac{1}{2}\det \left( A+\omega B\right) \), due to the discriminant of \(P(\omega )\) is

$$\begin{aligned} \varDelta = k^2(\theta \tilde{\mu }+\tilde{\theta }\mu )^2 -4\theta \mu \tilde{\theta }\tilde{\mu }\ge 0, \end{aligned}$$

then the roots of \(P(\omega )\) must be real. Thus for \(\omega \) that is not real, \(P(\omega )\ne 0\). With noticing the values of \(P(\pm 1)\) are

$$\begin{aligned} P(1) = \left( (-1)^{k-1}k-1\right) (\theta +\mu -2\theta \mu )+1&, \\ P(-1)= \left( (-1)^{k}k-1\right) (\theta +\mu -2\theta \mu )+1&, \end{aligned}$$

then we have \(\det \left( A\pm B\right) =2P(\pm 1)\ne 0\) for \((\theta ,\mu )\in \mathbb {A}_2(k)\), which means \(A+\omega B\) is invertible for all \(|\omega |=1\) and \((\theta ,\mu )\in \mathbb {A}_2(k)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Zhang, D., Li, J. et al. An Ultra-weak Local Discontinuous Galerkin Method with Generalized Numerical Fluxes for the KdV–Burgers–Kuramoto Equation. J Sci Comput 99, 65 (2024). https://doi.org/10.1007/s10915-024-02528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02528-y

Keywords

Mathematics Subject Classification

Navigation