Skip to main content
Log in

Enhanced Error Estimates for Augmented Subspace Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, some enhanced error estimates are derived for the augmented subspace methods which are designed for solving eigenvalue problems. For the first time, we strictly prove that the augmented subspace methods have the second order convergence rate between the two iteration steps, which is better than the existing theoretical results in Lin and Xie (Math Comp 84:71–88, 2015), Xie et al. (SIAM J Numer Anal 57(6):2519–2550, 2019), Xu et al. (SIAM J Sci Comput 42(5):A2655–A2677, 2020) and more consistent with the results of actual numerical test. These sharper estimates explicitly depict the dependence of convergence rate on the coarse spaces, which provides new advantages for the augmented subspace methods. Some numerical examples are finally presented to validate these new estimate results and the efficiency of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Babuška, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenfunctions of selfadjoint problems. Math. Comp. 52, 275–297 (1989)

    Article  MATH  Google Scholar 

  3. Babuška, I. and Osborn, J.: Eigenvalue Problems. In: Handbook of numerical analysis, Vol. II, Lions, P.G. and Ciarlet, P.G. (Eds.), Finite element methods (Part 1), North-Holland, Amsterdam, pp. 641–787 (1991)

  4. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the solution of agebraic eigenvalue problems: a practical guide. Society for Industrial and Applied Math, Philadelphia (2000)

  5. Balay, S., Abhyankar, S., Adams, M.F. , Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C, Mills, R.T., Munson, T., Rupp, K., Sanan,P., Smith, B.F., Zampini, S., Zhang, H. and Zhang, H.: PETSc Web page. https://www.mcs.anl.gov/petsc (2019)

  6. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, M.G., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H. and Zhang, H.: PETSc users manual, Tech. Report ANL-95/11 - Revision 3.14, Argonne National Laboratory (2020)

  7. Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, Arge, E., Bruaset, A.M., and Langtangen, H.P. (eds.), Birkhäuser Press, pp. 163–202 (1997, )

  8. Bramble, J.H., Pasciak, J., Knyazev, A.: A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv. Comput. Math. 6(1), 159–189 (1996)

    Article  MATH  Google Scholar 

  9. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  10. Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press Inc, New York (1983)

    MATH  Google Scholar 

  11. Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)

    Article  MATH  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problem, North-holland Amsterdam (1978)

  13. Conway, J.: A Course in Functional Analysis, Springer-Verlag (1990)

  14. Dang, H., Xie, H., Zhao, G. and Zhou, C.: A nonnested augmented subspace method for eigenvalue problems with curved interfaces, arXiv: 2008.07691, (2020)

  15. D’yakonov, E.G. and Orekhov, M.Y.: Minimization of the computational labor in determining the first eigenvalues of differential operators. Math. Notes 27, 382–391 (1980)

  16. Henning, P., Må lqvist, A. and D. Peterseim,: Two-level discretization techniques for ground state computations of Bose-Einstein condensates. SIAM J. Numer. Anal. 52(4), 1525–1550 (2014)

  17. Hong, Q., Xie, H., Xu, F.: A multilevel correction type of adaptive finite element method for eigenvalue problems. SIAM J. Sci. Comput. 40(6), A4208–A4235 (2018)

    Article  MATH  Google Scholar 

  18. Knyazev, A.: Preconditioned eigensolvers-an oxymoron? Electr. Trans. Numer. Anal. 7, 104–123 (1998)

    MATH  Google Scholar 

  19. Knyazev, A.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MATH  Google Scholar 

  20. Knyazev, A., Neymeyr, K.: Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electr. Trans. Numer. Anal. 15, 38–55 (2003)

    MATH  Google Scholar 

  21. Li, Y., Xie, H., Xu, R., You, C., Zhang, N.: A parallel generalized conjugate gradient method for large scale eigenvalue problems. CCF Trans. High Perform. Comput. 2, 111–122 (2020)

    Article  Google Scholar 

  22. Lin, Q., Xie, G.: An acceleration method for solving eigenvalue problems by the finite element methods (in Chinese). Chin. Sci. Bull. 26(8), 449–452 (1981)

    Google Scholar 

  23. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comp. 84, 71–88 (2015)

    Article  MATH  Google Scholar 

  24. Må lqvist, A. and Peterseim, D.: Computation of eigenvalues by numerical upscaling. Numer. Math. 130(2), 337–361 (2015)

  25. Må lqvist, A. and Peterseim, D.: Numerical homogenization by localized orthogonal decomposition, vol. 5, SIAM Spotlights, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2021)

  26. Roman, J.E., Campos, C., Romero, E. and Tomǎs, A.: Slepc users manual–scalable library for eigenvalue problem computations, Tech. Report 3.14, Universitat Polit‘ecnica de Valencia, Spain

  27. Saad, Y.: Numerical Methods For Large Eigenvalue Problems, Society for Industrial and Applied Mathematics, (2011)

  28. Sorensen, D.: Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations. Springer, Netherlands (1997)

    Book  MATH  Google Scholar 

  29. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Eiglewood Cliffs, NJ (1973)

    MATH  Google Scholar 

  30. Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)

    Article  MATH  Google Scholar 

  31. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MATH  Google Scholar 

  32. Xie, H., Zhang, L., Owhadi, H.: Fast eigenpairs computation with operator adapted wavelets and hierarchical subspace correction. SIAM J. Numer. Anal 57(6), 2519–2550 (2019)

    Article  MATH  Google Scholar 

  33. Xu, F., Xie, H., Zhang, N.: A parallel augmented subspace method for eigenvalue problems. SIAM J. Sci. Comput. 42(5), A2655–A2677 (2020)

    Article  MATH  Google Scholar 

  34. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70(233), 17–25 (2001)

    Article  MATH  Google Scholar 

  35. Zhang, N., Li, Y., Xie, H., Xu, R., You, C.: A generalized conjugate gradient method for eigenvalue problems (in Chinese). Sci. Sinica Math. 51, 1297–1320 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and two anonymous referees for their valuable comments which improve this manuscript a lot.

Funding

This work was partly supported by the National Key Research and Development Program of China (2019YFA0709601), Beijing Natural Science Foundation (Z200003), National Natural Science Foundation of China (NSFC 11771434), the National Center for Mathematics and Interdisciplinary Science, CAS, and by the Research Foundation for Beijing University of Technology New Faculty (006000514122516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Zhou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Wang, Y., Xie, H. et al. Enhanced Error Estimates for Augmented Subspace Method. J Sci Comput 94, 40 (2023). https://doi.org/10.1007/s10915-022-02090-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02090-5

Keywords

Mathematics Subject Classification

Navigation