Skip to main content

Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations

  • Chapter
Parallel Numerical Algorithms

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 4))

Abstract

Eigenvalues and eigenfunctions of linear operators are important to many areas of applied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fueled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now available, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly.

The purpose of this article is to provide an overview of the numerical solution of large-scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted Arnoldi Method (Sorensen, 1992) is presented here in some depth. This method is highlighted because of its suitability as a basis for software development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnoldi, W.E., 1951. “The principle of minimized iterations in the solution of the matrix eigenvalue problem,” Quart. Appl. Math. 9, pp. 17–29.

    MathSciNet  MATH  Google Scholar 

  • Bai, Z., Day, D., and Ye, Q., 1995. “ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems,” Tech. Rep. 95-04, University of Kentucky, Lexington.

    Google Scholar 

  • Bai, Z., and Stewart, G.W., 1992. “SRRIT — A FORTRAN subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix,” Tech. Rep. 2908, Department of Computer Science, University of Maryland.

    Google Scholar 

  • Baliga, A., Trifedi, D., and Anderson, N.G., 1994. “Tensile-strain effects in quantum-well and superlattice band structures,” Phys. Rev. B, pp. 10402–10416.

    Google Scholar 

  • Chatelin, F., and Ho, D., 1990. “Arnoldi-Tchebychev procedure for large scale nonsymmetric matrices,” Math. Modeling and Num. Analysis 24, pp. 53–65.

    MathSciNet  MATH  Google Scholar 

  • Cullum, J., 1978. “The simultaneous computation of a few of the algebraically largest and smallest eigenvalues of a large, symmetric, sparse matrix,” BIT 18, pp. 265–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Cullum, J., and Donath, W.E., 1974. “A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace for large, sparse symmetric matrices,” In Proc. 1974 IEEE Conf. on Decision and Control, IEEE Press, New York, pp. 505–509.

    Google Scholar 

  • Cullum, J., and Willoughby, R.A., 1981. “Computing eigenvalues of very large symmetric matrices — An implementation of a Lanczos algorithm with no reorthogonalization,” J. Comp. Phys. 434, pp. 329–358.

    Article  MathSciNet  Google Scholar 

  • Daniel, J., Gragg, W.B., Kaufman, L., and Stewart, G.W., 1976. “Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization,” Math. Comp. 30, pp. 772–795.

    MathSciNet  MATH  Google Scholar 

  • Dongarra, J.J., Du Croz, J., Hammarling, S., and Hanson, R.J., 1988. “Algorithm 656: An extended set of Fortran basic linear algebra subprograms: Model implementation and test programs,” ACM Trans. Math. Soft. 14, pp. 18–32.

    Article  MATH  Google Scholar 

  • Dongarra, J.J., Duff, I.S., Sorensen, D.C., and Van der Vorst, H.A., 1991. Solving Linear Systems on Vector and Shared Memory Computers, SIAM, Philadelphia.

    Google Scholar 

  • Duff, I.S., and Scott, J., 1993. “Computing selected eigenvalues of large sparse unsymmetric matrices using subspace iteration,” ACM Trans. on Math. Soft. 19, pp. 137–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, W.S., Tuckerman, L.S., Friesner, R.A., and Sorensen, D.C., 1994. “Krylov Methods for the Incompressible Navier-Stokes Equations,” J. Comp. Phys. 110, pp. 82–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Ericsson, T., and Ruhe, A., 1980. “The spectral transformation Lanczos method for the numerical solution of large space generalized symmetric eigenvalue problems,” Math. Comp. 35, pp. 1251–1268.

    MathSciNet  MATH  Google Scholar 

  • Feinswog, L., Sherman, M., Chiu, W., and Sorensen, D.C. “Improved Computational Methods for 3-Dimensional Image Reconstruction,” CRPC Tech. Rep., Rice University (in preparation).

    Google Scholar 

  • Francis, J.G.F., 1961. “The QR transformation: A unitary analogue to the LR transformation, Parts I and II,” Comp. J. 4, pp. 265–272, 332-345.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G.H., and Van Loan, C.F., 1983. Matrix Computations, The Johns Hopkins University Press, Baltimore, Maryland.

    MATH  Google Scholar 

  • Grimes, R.G., Lewis, J.G., and Simon, H.D., 1994. “A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems,” SIAM J. Matrix Anal. Appl. 15, pp. 228–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Karush, W., 1951. “An iterative method for finding characteristic vectors of a symmetric matrix,” Pacific J. Math. 1, pp. 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Kooper, M.N., Van der Vorst, H.A., Poedts, S., and Goedbloed, J.P., 1993. “Application of the Implicitly Updated Arnoldi Method for a Complex Shift and Invert Strategy in MHD,” Tech. Rep., Institute for Plasmaphysics, FOM Rijnhuizen, Nieuwegin, The Netherlands.

    Google Scholar 

  • Lanczos, C., 1950. “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Nat. Bur. Stand. 45, pp. 255–282.

    MathSciNet  Google Scholar 

  • Lehoucq, R.B., 1995. Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration, Ph.D. Thesis, Rice University. (Available as CAAM TR95-13, Rice University, Houston.)

    Google Scholar 

  • Lehoucq, R.B., and Sorensen, D.C., 1994. “Deflation Techniques for an Implicitly Re-started Arnoldi Iteration,” CAAM TR94-13, Rice University, Houston.

    Google Scholar 

  • Lehoucq, R., Sorensen, D.C., and Vu, P.A., 1994. “ARPACK: Fortran subroutines for solving large scale eigenvalue problems,” Release 2.1, available from netlib@orn1.gov in the scalapack directory.

    Google Scholar 

  • Li, T.L., Kuhn, K.J., 1993. “FEM solution to quantum wells by irreducible formulation,” Dept. Elec. Eng. Tech. Rep., University of Washington.

    Google Scholar 

  • Manteuffel, T.A., 1978. “Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration,” Numer. Math. 31, pp. 183–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Meerbergen, K., and Spence, A., 1995. “Implicitly restarted Arnoldi with purification for the shift-invert transformation,” Tech. Rep. TW225, Katholieke Universitet, Leuven, Belgium.

    Google Scholar 

  • Morgan, R.B., 1996. “On restarting the Arnoldi method for large scale eigenvalue problems,” Math. Comp. 67 (to appear).

    Google Scholar 

  • Nour-Omid, B., Parlett, B.N., Ericsson, T., and Jensen, P.S., 1987. “How to implement the spectral transformation”, Math. Comp. 8, pp. 663–673.

    Article  MathSciNet  Google Scholar 

  • Paige, C.C., 1971. The Computation of Eigenvalues and Eigenvectors of a Very Large Sparse Matrices, Ph.D. Thesis, University of London.

    Google Scholar 

  • Parlett, B.N., 1980. The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Parlett, B.N., and Scott, D.S., 1979. “The Lanczos algorithm with selective orthogonalization,” Math. Comp. 33, pp. 311–328.

    Article  MathSciNet  Google Scholar 

  • Pendergast, P., Darakjian, Z., Hayes, E.F., and Sorensen, D.C., 1994. “Scalable Algorithms for Three-Dimensional Reactive Scattering: Evaluation of a New Algorithm for Obtaining Surface Functions,” J. Comp. Phys. 113, pp. 201–214.

    Article  MATH  Google Scholar 

  • Romo, T.D., Clarage, J.B., Sorensen, D.C., and Phillips, G.N., 1994. “Automatic Identification of Discrete Substates in Proteins: Singular Value Decomposition Analysis of Time Averaged Crystallographic Refinements,” CRPC-TR 94481, Rice University.

    Google Scholar 

  • Ruhe, A., 1984. “Rational Krylov sequence methods for eigenvalue computation,” Lin. Alg. Appl. 58, pp. 391–405.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruhe, A., 1994. “Rational Krylov sequence methods for eigenvalue computation II,” Lin. Alg. Appl. 197, 198, pp. 283–294.

    Article  MathSciNet  Google Scholar 

  • Saad, Y., 1980. “Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices,” Lin. Alg. Appl. 34, pp. 269–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Saad, Y., 1984. “Chebyshev acceleration techniques for solving non-symmetric eigenvalue problems,” Math. Comp. 42, pp. 567–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Saad, Y., 1992. Numerical Methods for Large Eigenvalue Problems, Halsted Press-John Wiley & Sons Inc., New York.

    MATH  Google Scholar 

  • Scott, J.A., 1993. “An Arnoldi code for computing selected eigenvalues of sparse real unsymmetric matrices,” Tech. Rep. RAL-93-097, Rutherford Appleton Laboratory.

    Google Scholar 

  • Simon, H., 1984. “Analysis fo the symmetric Lanczos algorithm with reorthogonalization methods,” Lin. Alg. Appl. 61, pp. 101–131.

    Article  MATH  Google Scholar 

  • Sorensen, D.C., 1992. “Implicit application of polynomial filters in a k-step Arnoldi method,” SIAM J. Matrix Anal. Appl. 13, pp. 357–385.

    Article  MathSciNet  MATH  Google Scholar 

  • Sorensen, D.C., Vu, P.A., and Tomasic, Z., 1993. “Algorithms and Software for Large Scale Eigenproblems on High Performance Computers,” in High Performance Computing 1993 — Grand Challenges in Computer Simulation (Proc. 1993 Simulation Multiconference, Soc. for Computer Simulation), Adrian Tent-ner, ed., pp. 149–154.

    Google Scholar 

  • Stewart, G.W., 1973. Introduction to Matrix Computations, Academic Press, New York.

    MATH  Google Scholar 

  • Stewart, W.J., and Jennings, A., 1981. “ALGORITHM 570: LOPSI a simultaneous iteration method for real matrices [F2],” ACM Trans. on Math. Soft. 7, pp. 184–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Heel, M., and Frank, J., 1981. “Use of Multivariate Statistics in Analysing the Images of Biologica Macromolecules,” Ultramicroscopy 6, pp. 187–194.

    Google Scholar 

  • Van Huffel, S., and Vandewalle, J., 1991. The Total Least Square Problem: Computational Aspects and Analysis, Frontiers in Applied Mathematics 9, SIAM, Philadelphia.

    Google Scholar 

  • Walker, H.F., 1988. “Implementation of the GMRES method using Householder transformations,” SIAM J. Sci. Stat. Comp. 9, pp. 152–163.

    Article  MATH  Google Scholar 

  • Watkins, D.S., and Eisner, L., 1991. “Convergence of algorithms of decomposition type for the eigenvalue problem,” Lin. Alg. Appl. 143, pp. 19–47.

    Article  MATH  Google Scholar 

  • Wilkinson, J.H., 1965. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sorensen, D.C. (1997). Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations. In: Keyes, D.E., Sameh, A., Venkatakrishnan, V. (eds) Parallel Numerical Algorithms. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5412-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5412-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6277-0

  • Online ISBN: 978-94-011-5412-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics