Skip to main content
Log in

Solving Blind Ptychography Effectively Via Linearized Alternating Direction Method of Multipliers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The problem of blind ptychography is to determine the specimen object and the scanning probe simultaneously from diffraction data. By formulating the problem as a nonconvex optimization, we propose linearized alternating direction method of multipliers (LADMM) to effectively solve the blind ptychography problem. Different from the iterative ptychographic engines (including ePIE, rPIE and other variants), all of the diffraction patterns are simultaneously exploited in our optimization based approach to address the ill-posedness of the problem. Compared to the existing ADMM-type algorithm in the literature (Chang et al. in SIAM J Imaging Sci 12(1):153–185, 2019), ours is based on a new splitting form for the bilinear term, which enables closed-form solutions for each subproblem. Convergence to stationary point of the considered optimization is provided under certain assumptions. It is observed that the performance of ADMM-type method highly depends on the penalty parameter. Thus LADMM with adaptive penalty parameter is developed to prioritize the reconstruction performance and have empirical convergence guarantee. With numerical comparison to other competitive algorithms, our proposed method outperforms the current state-of-the-art ones on simulated and experimental data, especially for the only limited available diffraction data case, which validates the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. The condition does not imply the iterations of LADMM (8) are around the truth solution. Of course, at basin of truth solution, the condition holds.

  2. There is a slight difference between the definition of the Lagrangian function here and that in [4] on the position of the Fourier transform.

  3. It can be downloaded from http://www.physics.ucla.edu/research/imaging/sDR/index.html.

  4. It can be downloaded from https://vaopt.math.uni-goettingen.de/en/software/ProxMatlab-Release3.0.tar.gz.

References

  1. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. JOSA A 19(7), 1334–1345 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brady, G.R., Guizar-Sicairos, M., Fienup, J.R.: Optical wavefront measurement using phase retrieval with transverse translation diversity. Opt. Express 17(2), 624–639 (2009)

    Article  Google Scholar 

  4. Chang, H., Enfedaque, P., Marchesini, S.: Blind ptychographic phase retrieval via convergent alternating direction method of multipliers. SIAM J. Imaging Sci. 12(1), 153–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Enders, B., Thibault, P.: A computational framework for ptychographic reconstructions. Proc. Math. Phys. Eng. Sci. 472, 2196 (2016). https://doi.org/10.1098/rspa.2016.0640

    Article  Google Scholar 

  6. Fannjiang, A.: Absolute uniqueness of phase retrieval with random illumination. Inverse Prob. 28(7), 075008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fannjiang, A., Zhang, Z.: Fixed point analysis of Douglas–Rachford splitting for ptychography and phase retrieval. SIAM J. Imaging Sci. 13(2), 609–650 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fienup, C., Dainty, J.: Phase retrieval and image reconstruction for astronomy. Image Recov. Theory Appl. 231, 275 (1987)

    Google Scholar 

  9. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  10. Gao, W., Goldfarb, D., Curtis, F.E.: ADMM for multiaffine constrained optimization. Optim. Methods Softw. 35(2), 257–303 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodman, J.W.: Introduction to Fourier optics. Roberts and Company Publishers, New York (2005)

    Google Scholar 

  12. Guan, Z., Tsai, E.H.: PtychoNet: fast and high quality phase retrieval for ptychography. Tech. Rep. BNL-213637-2020-FORE, 1599580 (2019). https://doi.org/10.2172/1599580

  13. Hajinezhad, D., Chang, T.H., Wang, X., Shi, Q., Hong, M.: Nonnegative matrix factorization using admm: algorithm and convergence analysis. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4742–4746. IEEE (2016)

  14. Hajinezhad, D., Shi, Q.: Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications. J. Global Optim. 70(1), 261–288 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging. SIAM J. Imaging Sci. 8(1), 426–457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kandel, S., Maddali, S., Nashed, Y.S., Hruszkewycz, S.O., Jacobsen, C., Allain, M.: A matrix-free Levenberg–Marquardt algorithm for efficient ptychographic phase retrieval. arXiv:2103.01767 (2021)

  17. Li, J., Zhao, H.: Solving phase retrieval via graph projection splitting. Inverse Prob. 36(5), 055003 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J., Zhou, T.: Numerical optimization algorithms for wavefront phase retrieval from multiple measurements. Inverse Prob. Imaging 11(4), 721 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhou, T.: On relaxed averaged alternating reflections (RAAR) algorithm for phase retrieval with structured illumination. Inverse Prob. 33(2), 025012 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luke, D.R., Burke, J.V., Lyon, R.G.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44(2), 169–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maiden, A., Johnson, D., Li, P.: Further improvements to the ptychographical iterative engine. Optica 4(7), 736–745 (2017)

    Article  Google Scholar 

  23. Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 1256–1262 (2009)

    Article  Google Scholar 

  24. Miao, J., Charalambous, P., Kirz, J., Sayre, D.: Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742), 342–344 (1999)

    Article  Google Scholar 

  25. Nguyen, T., Xue, Y., Li, Y., Tian, L., Nehmetallah, G.: Deep learning approach for Fourier ptychography microscopy. Opt. Express 26(20), 26470–26484 (2018)

    Article  Google Scholar 

  26. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  27. Paul, H., et al.: Phase retrieval in quantum mechanics. Phys. Rev. A 50(2), R921 (1994)

    Article  Google Scholar 

  28. Pham, M., Rana, A., Miao, J., Osher, S.: Semi-implicit relaxed Douglas–Rachford algorithm (sDR) for ptychography. Opt. Express 27(22), 31246–31260 (2019)

    Article  Google Scholar 

  29. Qian, J., Yang, C., Schirotzek, A., Maia, F., Marchesini, S.: Efficient algorithms for ptychographic phase retrieval. Inverse problems and applications. Contemp. Math. 615, 261–280 (2014)

    Article  MATH  Google Scholar 

  30. Themelis, A., Patrinos, P.: Douglas–Rachford splitting and ADMM for nonconvex optimization: tight convergence results. SIAM J. Optim. 30(1), 149–181 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wen, Z., Yang, C., Liu, X., Marchesini, S.: Alternating direction methods for classical and ptychographic phase retrieval. Inverse Prob. 28(11), 115010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, Z., De, S., Figueiredo, M., Studer, C., Goldstein, T.: An empirical study of ADMM for nonconvex problems. arXiv:1612.03349 (2016)

  34. Zhang, Z., Maiden, A.M.: A comparison of ptychographic phase retrieval algorithms. In: Quantitative Phase Imaging V, vol. 10887, p. 108870V. International Society for Optics and Photonics (2019)

  35. Zheng, G., Shen, C., Jiang, S., Song, P., Yang, C.: Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 1–17 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Li.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by China Postdoctoral Science Foundation Grant No. 2017M620589 and National Natural Science Foundation of China Grant No. 11801025.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Solving Blind Ptychography Effectively Via Linearized Alternating Direction Method of Multipliers. J Sci Comput 94, 19 (2023). https://doi.org/10.1007/s10915-022-02072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02072-7

Keywords

Mathematics Subject Classification

Navigation