Skip to main content
Log in

A Cross-Product Free Jacobi–Davidson Type Method for Computing a Partial Generalized Singular Value Decomposition of a Large Matrix Pair

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A cross-product free (CPF) Jacobi–Davidson type method is proposed to compute a partial generalized singular value decomposition (GSVD) of a large regular matrix pair \(\{A,B\}\), called CPF-JDGSVD. It implicitly solves the mathematically equivalent generalized eigenvalue problem of the cross-product matrix pair \(\{A^TA,B^TB\}\) using the Rayleigh–Ritz projection method but does not form the cross-product matrices explicitly, and thus avoids the possible accuracy loss of the computed generalized singular values and generalized singular vectors. The method is an inner-outer iteration method, where the expansion of the right searching subspace forms the inner iterations that approximately solve the correction equations involved and the outer iterations extract approximate GSVD components with respect to the subspaces. A convergence result is established for the outer iterations, compact bounds are derived for the condition numbers of the correction equations, and the least solution accuracy requirements on the inner iterations are found, which can maximize the overall efficiency of CPF-JDGSVD as much as possible. Based on them, practical stopping criteria are designed for the inner iterations. A thick-restart CPF-JDGSVD algorithm with deflation and purgation is developed to compute several GSVD components of \(\{A,B\}\) associated with the generalized singular values closest to a given target \(\tau \). Numerical experiments illustrate the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Enquires about data availability should be directed to the authors.

References

  1. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Van der Vorst, H.A.: Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  2. Betcke, T.: The generalized singular value decomposition and the method of particular solutions. SIAM J. Sci. Comput. 30(3), 1278–1295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björck, Å.: Numerical methods for least squares problems. SIAM, Philadelphia, PA (1996)

    Book  MATH  Google Scholar 

  4. Chu, K.W.E.: Singular value and generalized singular value decompositions and the solution of linear matrix equations. Linear Algebra Appl. 88, 83–98 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Software 38, 1–25 (2011). Data available online at http://www.cise.ufl.edu/research/sparse/matrices/

  6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. John Hopkins University Press, Baltimore (2012)

    MATH  Google Scholar 

  7. Greenbaum, A.: Iterative methods for solving linear systems. SIAM, Philadephia, PA (1997)

    Book  MATH  Google Scholar 

  8. Hansen, P.C.: Regularization, GSVD and truncated GSVD. BIT 29(3), 491–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, P.C.: Rank-deficient and discrete Ill-posed problems: numerical aspects of linear inversion. SIAM, Philadelphia, PA (1998)

    Book  Google Scholar 

  10. Hochstenbach, M.E.: A Jacobi-Davidson type method for the generalized singular value problem. Linear Algebra Appl. 431(3–4), 471–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Howland, P., Jeon, M., Park, H.: Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl. 25(1), 165–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, J., Jia, Z.: On inner iterations of Jacobi-Davidson type methods for large SVD computations. SIAM J. Sci. Comput. 41(3), A1574–A1603 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, J., Jia, Z.: On choices of formulations of computing the generalized singular value decomposition of a matrix pair. Numer. Algor. 87, 689–718 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, J., Jia, Z.: Two harmonic Jacobi-Davidson methods for computing a partial generalized singular value decomposition of a large matrix pair. J. Sci. Comput. 93(2), 41 (2022). https://doi.org/10.1007/s10915-022-01993-07

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, Z., Li, C.: Inner iterations in the shift-invert residual Arnoldi method and the Jacobi-Davidson method. Sci. China Math. 57, 1733–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, Z., Li, C.: Harmonic and refined harmonic shift-invert residual Arnoldi and Jacobi-Davidson methods for interior eigenvalue problems. J. Comput. Appl. Math. 282, 83–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jia, Z., Li, H.: The joint bidiagonalization process with partial reorthogonalization. Numer. Algor. 88, 965–992 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jia, Z., Stewart, G.: An analysis of the Rayleigh-Ritz method for approximating eigenspaces. Math. Comput. 70(234), 637–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, Z., Yang, Y.: A joint bidiagonalization based iterative algorithm for large scale general-form tikhonov regularization. Appl. Numer. Math. 157, 159–177 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kågström, B.: The generalized singular value decomposition and the general (A\(-\lambda \)B)-problem. BIT 24(4), 568–583 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18(3), 398–405 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Park, C.H., Park, H.: A relationship between linear discriminant analysis and the generalized minimum squared error solution. SIAM J. Matrix Anal. Appl. 27(2), 474–492 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Refahi Sheikhani, A.H., Kordrostami, S.: New iterative methods for generalized singular value problems. Math. Sci. 11, 247–265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia, PA (2003)

    Book  MATH  Google Scholar 

  25. Stathopoulos, A., Saad, Y., Wu, K.: Dynamic thick restarting of the Davidson and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 227–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stewart, G.W.: Matrix algorithms eigen systems, vol. II. SIAM, Philadephia, PA (2001)

    Book  Google Scholar 

  27. Stewart, G.W., Sun, J.G.: Matrix perturbation theory. Acadmic Press Inc, Boston (1990)

    MATH  Google Scholar 

  28. van der Vorst, H.A.: Computational Methods for Large Eigenvalue Problems. Handbook of Numerical Analysis, Vol. VIII, Ciarlet, P.G., Lions, J.L. (eds), Elsvier (2002)

  29. Van Huffel, S., Lemmerling, P.: Total least squares and errors-in-variables modeling. Kluwer Academic Publishers (2002)

    Book  MATH  Google Scholar 

  30. Van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13(1), 76–83 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wathen, A.J.: Preconditioning. Acta Numer. 24, 329–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zha, H.: Computing the generalized singular values/vectors of large sparse or structured matrix pairs. Numer. Math. 72(3), 391–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zwaan, I.N.: Cross product-free matrix pencils for computing generalized singular values (2019). arXiv:1912.08518 [math.NA]

  34. Zwaan, I.N., Hochstenbach, M.E.: Generalized Davidson and multidirectional-type methods for the generalized singular value decomposition (2017). arXiv:1705.06120 [math.NA]

Download references

Acknowledgements

We would like to thank the two referees for their suggestions and comments, which made us improve the presentation of the paper.

Funding

The work of the first and second authors was supported by the Youth Program of the Natural Science Foundation of Jiangsu Province (No. BK20220482) and the National Science Foundation of China (No. 12171273), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiao Jia.

Ethics declarations

Conflict of interest

The two authors declare that they have no financial interests, and they read and approved the final manuscript. The algorithmic Matlab code is available upon reasonable request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Huang and Z. Jia have contributed equally to this work. The work of Jinzhi Huang and Zhongxiao Jia was supported by the Youth Program of the Natural Science Foundation of Jiangsu Province (No. BK20220482) and the National Science Foundation of China (No. 12171273), respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Jia, Z. A Cross-Product Free Jacobi–Davidson Type Method for Computing a Partial Generalized Singular Value Decomposition of a Large Matrix Pair. J Sci Comput 94, 3 (2023). https://doi.org/10.1007/s10915-022-02053-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02053-w

Keywords

Mathematics Subject Classification

Navigation