Skip to main content
Log in

Optimal Error Estimates of the Local Discontinuous Galerkin Method and High-order Time Discretization Scheme for the Swift–Hohenberg Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a local discontinuous Galerkin (LDG) method for the Swift–Hohenberg equation. The energy stability and optimal error estimates in \(L^2\) norm of the semi-discrete LDG scheme are established. To avoid the severe time step restriction of explicit time marching methods, a first-order linear scheme based on the scalar auxiliary variable (SAV) method is employed for temporal discretization. Coupled with the LDG spatial discretization, we achieve a fully-discrete LDG method and prove its energy stability and optimal error estimates. To improve the temporal accuracy, the semi-implicit spectral deferred correction (SDC) method is adapted iteratively. Combining with the SAV method, the SDC method can be linear, high-order accurate and energy stable in our numerical tests. Numerical experiments are presented to verify the theoretical results and to show the efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1975)

    Google Scholar 

  2. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  Google Scholar 

  5. Cross, M., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  6. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)

    Article  MathSciNet  Google Scholar 

  7. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for fourth-order time-dependent problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  Google Scholar 

  8. Feng, X., Tang, T., Yang, J.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)

    Article  MathSciNet  Google Scholar 

  9. Guo, R., Ji, L., Xu, Y.: High order local discontinuous Galerkin methods for the Allen-Cahn equation: analysis and simulation. J. Comput. Math. 34, 135–158 (2016)

    Article  MathSciNet  Google Scholar 

  10. Guo, R., Xu, Y.: A high order adaptive time-stepping strategy and local discontinuous Galerkin method for the modified phase field crystal equation. Commun. Comput. Phys. 24, 123–151 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models. Comput. Phys. Commun. 249, 107033 (2020)

    Article  MathSciNet  Google Scholar 

  12. Hutt, A., Atay, F.M.: Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Phys. D Nonlinear Phenom. 203, 30–54 (2005)

    Article  MathSciNet  Google Scholar 

  13. Lee, H.G.: A semi-analytical Fourier spectral method for the Swift–Hohenberg equation. Comput. Math. Appl. 74, 1885–1896 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liu, H., Yin, P.: Unconditionally energy stable DG schemes for the Swift–Hohenberg equation. J. Sci. Comput. 81, 789–819 (2019)

    Article  MathSciNet  Google Scholar 

  15. Liu, H., Yin, P.: High order unconditionally energy stable RKDG schemes for the Swift–Hohenberg equation. J. Comput. Appl. Math. 407, 114015 (2022)

    Article  MathSciNet  Google Scholar 

  16. Minion, M.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1, 471–500 (2003)

    Article  MathSciNet  Google Scholar 

  17. Qi, L., Hou, Y.: A second order energy stable BDF numerical scheme for the Swift–Hohenberg equation. J. Sci. Comput. 88, 1–25 (2021)

    Article  MathSciNet  Google Scholar 

  18. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479. Los Alamos Scientific Laboratory, Los Alamos (1973)

  19. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  20. Swift, J., Hohenberg, P.C.: Effects of additive noise at the onset of Rayleigh–Benard convection. Phys. Rev. A 46, 4773–4785 (1992)

    Article  Google Scholar 

  21. Song, H., Shu, C.-W.: Unconditionally energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation. J. Sci. Comput. 73, 1178–1203 (2017)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2017)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  24. Tang, T., Xie, H., Yin, X.: High-order convergence of spectral deferred correction methods on general quadrature nodes. J. Sci. Comput. 56, 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wang, H., Zhang, Q., Shu, C.-W.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs. ESAIM Math. Model. Numer. Anal. 51, 1931–1955 (2017)

    Article  MathSciNet  Google Scholar 

  26. Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. A 8, 677–693 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Xu, Y., Shu, C.-W.: Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Z., Ma, Y.: On a large time-stepping method for the Swift–Hohenberg equation. Adv. Appl. Math. Mech. 8, 992–1003 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant No. 12001171), Natural Science Foundation of Henan Province, China (Grant No. 222300420550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihan Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Zhou: Research supported by NSFC Grant No. 12001171.

R. Guo: Research supported by Natural Science Foundation of Henan Province, China Grant No. 222300420550.

Appendix

Appendix

In this section, we will present the proof of Lemma 3.2, the optimal error estimate of the elliptic projection, by two lemmas. Denote the errors between the exact solutions of (2.1) and the elliptic projection (3.25) by \(R_{u}\), \(R_{\varvec{\omega }}\), \(R_q\), \(R_{{\varvec{s}}}\). Suppose \((P, \Pi ) = (P^{-}, P^{+})\) is defined by (2.13)–(2.14) for the one-dimensional space, and take \((P, \Pi ) = (P^{-}, \Pi ^{+})\) defined by (2.15)–(2.16) for multidimensional Cartesian meshes. Then the errors can be divided into

$$\begin{aligned} R_{u}&=u-Pu+PR_u=\eta _u+PR_u,\;\;R_{{\varvec{\omega }}}={\varvec{\omega }}-\Pi {\varvec{\omega }}+\Pi R_{\varvec{\omega }}=\eta _{\varvec{\omega }}+\Pi R_{\varvec{\omega }},\\ R_{q}&=q-Pq+PR_q=\eta _q+PR_q,\;\;R_{{{\varvec{s}}}}={{\varvec{s}}}-\Pi {{\varvec{s}}}+\Pi R_{{\varvec{s}}}=\eta _{{\varvec{s}}}+\Pi R_{{\varvec{s}}}. \end{aligned}$$

With the definition of the elliptic projection (3.25) and the property (2.17), we obtain the error equation

$$\begin{aligned} 0&=H^{+}(\Pi R_{{\varvec{s}}},\varphi _1), \end{aligned}$$
(6.1a)
$$\begin{aligned} (R_{{\varvec{s}}},{\varvec{\theta } }_1)&=-H^{-}(\eta _q,{\varvec{\theta } }_1)-H^{-}(PR_q,{\varvec{\theta } }_1), \end{aligned}$$
(6.1b)
$$\begin{aligned} (R_q,\varphi _2)&=-H^{+}(\Pi R_{\varvec{\omega }},\varphi _2), \end{aligned}$$
(6.1c)
$$\begin{aligned} (R_{\varvec{\omega }},{\varvec{\theta } }_2)&=-H^{-}(\eta _u,{\varvec{\theta } }_2)-H^{-}(PR_u,{\varvec{\theta } }_2). \end{aligned}$$
(6.1d)

Note that for the one-dimensional space, \(H^{-}(\eta _q,{\varvec{\theta } }_1)=0\) and \(H^{-}(\eta _u,{\varvec{\theta } }_2)\). The analysis will be the same as that in [25]. Now we show the following estimates.

Lemma 6.1

$$\begin{aligned} \Vert \Pi R_{{\varvec{s}}}\Vert&\lesssim h^{k+1},\;\;\Vert R_{{\varvec{s}}}\Vert +h^{1/2}\Vert R_{{\varvec{s}}}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\lesssim h^{k+1},\\ \Vert P R_q\Vert&\lesssim \Vert PR_u\Vert +h^{k+1},\;\;\Vert R_q\Vert \lesssim \Vert PR_u\Vert +h^{k+1},\\ \Vert \Pi R_{\varvec{\omega }}\Vert&\lesssim \Vert PR_u\Vert +h^{k+1},\;\;\Vert R_{\varvec{\omega }}\Vert +h^{1/2}\Vert R_{\varvec{\omega }}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\lesssim \Vert PR_u\Vert +h^{k+1}. \end{aligned}$$

Here and below the notation \(a\lesssim b\) means that, there exists a constant \(C>0\) such that \(a\le b\).

Proof

Taking \({\varvec{\theta } }_1=\Pi R_{{\varvec{s}}}\) in (6.1b) and by the property (2.4), (6.1a), we have

$$\begin{aligned} (R_{{\varvec{s}}},\Pi R_{{\varvec{s}}})&=-H^{-}(\eta _q,\Pi R_{{\varvec{s}}})-H^{-}(PR_q,\Pi R_{{\varvec{s}}})\\&=-H^{-}(\eta _q,\Pi R_{{\varvec{s}}})+H^{+}(\Pi R_{{\varvec{s}}},PR_q)=-H^{-}(\eta _q,\Pi R_{{\varvec{s}}}), \end{aligned}$$

which yields

$$\begin{aligned} \Vert \Pi R_{{\varvec{s}}}\Vert ^{2}&=(\Pi R_{{\varvec{s}}},\Pi R_{{\varvec{s}}}-R_{{\varvec{s}}})+(R_{{\varvec{s}}},\Pi R_{{\varvec{s}}})\\&=(\Pi R_{{\varvec{s}}},-\eta _{{\varvec{s}}})-H^{-}(\eta _q,\Pi R_{{\varvec{s}}})\\&\lesssim h^{k+1}\Vert \Pi R_{{\varvec{s}}}\Vert . \end{aligned}$$

Here we use the approximation properties (2.18) and (2.19). Thus by the trace inequality and the triangle inequality, we have

$$\begin{aligned} \Vert \Pi R_{{\varvec{s}}}\Vert +h^{1/2}\Vert \Pi R_{{\varvec{s}}}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\lesssim h^{k+1},\;\;\Vert R_{{\varvec{s}}}\Vert +h^{1/2}\Vert R_{{\varvec{s}}}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\lesssim h^{k+1}. \end{aligned}$$

Taking \(\varphi _2=PR_q\) in (6.1c) and by (2.4) and (6.1b), we obtain

$$\begin{aligned} (R_q,PR_q)&=-H^{+}(\Pi R_{\varvec{\omega }},PR_q)=H^{-}(PR_q,\Pi R_{\varvec{\omega }})\\&=-H^{-}(\eta _q,\Pi R_{\varvec{\omega }})-(R_{{\varvec{s}}},\Pi R_{\varvec{\omega }}). \end{aligned}$$

Then

$$\begin{aligned} \Vert PR_q\Vert ^2&=(PR_q,PR_q-R_q)+(R_q,PR_q)\\&=(PR_q,-\eta _q)-H^{-}(\eta _q,\Pi R_{\varvec{\omega }})-(R_{{\varvec{s}}},\Pi R_{\varvec{\omega }})\\&\le \frac{1}{2} \Vert PR_q\Vert ^2+\frac{1}{2} \Vert \Pi R_{\varvec{\omega }}\Vert ^2+Ch^{2k+2}, \end{aligned}$$

where the Young’s inequality and (2.18)–(2.19) are used. Hence, we get

$$\begin{aligned} \Vert PR_q\Vert \lesssim \Vert \Pi R_{\varvec{\omega }}\Vert +h^{k+1},\;\;\Vert R_q\Vert \lesssim \Vert \Pi R_{\varvec{\omega }}\Vert +h^{k+1}. \end{aligned}$$
(6.2)

Finally, we take \({\varvec{\theta } }_2=\Pi R_{\varvec{\omega }}\) in (6.1d) and apply (2.4), (6.1c) to derive

$$\begin{aligned} (R_{\varvec{\omega }},\Pi R_{\varvec{\omega }})&=-H^{-}(\eta _u,\Pi R_{\varvec{\omega }})-H^{-}(PR_u,\Pi R_{\varvec{\omega }})\\&=-H^{-}(\eta _u,\Pi R_{\varvec{\omega }})-(R_q,PR_u). \end{aligned}$$

Then by Cauchy–Schwarz inequality, the Young’s inequality and (2.18)–(2.19), we have

$$\begin{aligned} \Vert \Pi R_{\varvec{\omega }}\Vert ^2&=(\Pi R_{\varvec{\omega }},\Pi R_{\varvec{\omega }}-R_{\varvec{\omega }})+(R_{\varvec{\omega }},\Pi R_{\varvec{\omega }})\\&=(\Pi R_{\varvec{\omega }},-\eta _{\varvec{\omega }})-H^{-}(\eta _u,\Pi R_{\varvec{\omega }})-(R_q,PR_u)\\&\le \frac{1}{2}\Vert \Pi R_{\varvec{\omega }}\Vert ^2+\Vert PR_u\Vert ^2+Ch^{2k+2}, \end{aligned}$$

which yields

$$\begin{aligned} \Vert \Pi R_{\varvec{\omega }}\Vert \lesssim \Vert PR_u\Vert +h^{k+1},\;\;\Vert R_{\varvec{\omega }}\Vert \lesssim \Vert PR_u\Vert +h^{k+1}. \end{aligned}$$

It follows from (6.2) that

$$\begin{aligned} \Vert PR_q\Vert \lesssim \Vert PR_u\Vert +h^{k+1},\;\;\Vert R_q\Vert \lesssim \Vert PR_u\Vert +h^{k+1}. \end{aligned}$$

A simple use of the trace inequality and the triangle inequality gives

$$\begin{aligned} h^{1/2}\Vert \Pi R_{\varvec{\omega }}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\lesssim \Vert PR_u\Vert +h^{k+1},\;\;h^{1/2}\Vert R_{\varvec{\omega }}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\lesssim \Vert PR_u\Vert +h^{k+1}. \end{aligned}$$

The proof is completed. \(\square \)

With the help of the adjoint problem (3.26), we will show the second lemma, which is used for the estimate of \(PR_u\).

Lemma 6.2

For \(z\in L^2(\Omega )\), we get

$$\begin{aligned} (PR_u,z)=&-H^{-}(\eta _u,\Pi {\varvec{\zeta } })-H^{-}(\eta _q,\Pi {\varvec{\theta } })\nonumber \\&-(R_{\varvec{\omega }},\Pi {\varvec{\zeta } }-{\varvec{\zeta } })+(R_q,P\varphi -\varphi )-(R_{{\varvec{s}}},\Pi {\varvec{\theta } }-{\varvec{\theta } })\nonumber \\&+(\varphi -P\varphi ,\nabla \cdot R_{\varvec{\omega }})+(\sigma -P\sigma ,\nabla \cdot R_{{\varvec{s}}})\nonumber \\&-{<}(R_{\varvec{\omega }}-{\hat{R}}_{\varvec{\omega }})\cdot {{\varvec{n}}},\varphi -P\varphi>-<(R_{{\varvec{s}}}-{\hat{R}}_{{\varvec{s}}})\cdot {{\varvec{n}}},\sigma -P\sigma >. \end{aligned}$$
(6.3)

Proof

By the adjoint problem (3.26) and integrating by part, we have

$$\begin{aligned} (PR_u,z)=(PR_u,\nabla \cdot {\varvec{\zeta } })&=-({\varvec{\zeta } },\nabla PR_u)+<{\varvec{\zeta } }\cdot {{\varvec{n}}},PR_u>\nonumber \\&=-H^{+}({\varvec{\zeta } },PR_u)-<({\hat{{\varvec{\zeta } }}}-{\varvec{\zeta } })\cdot {{\varvec{n}}},PR_u>\nonumber \\&=-H^{+}({\varvec{\zeta } }-\Pi {\varvec{\zeta } },PR_u)-H^{+}(\Pi {\varvec{\zeta } },PR_u)\nonumber \\&=H^{-}(PR_u,\Pi {\varvec{\zeta } }). \end{aligned}$$
(6.4)

Here the second line uses the definition of \(H^{+}\), the third line holds since \({\varvec{\zeta } }\) is continuous across the element interface and we adopt the property (2.17) of \(\Pi \) as well as (2.4) for the last line. By (6.1d), we obtain

$$\begin{aligned}&H^{-}(PR_u,\Pi {\varvec{\zeta } })\\&=-H^{-}(\eta _u,\Pi {\varvec{\zeta } })-(R_{\varvec{\omega }},\Pi {\varvec{\zeta } })=-H^{-}(\eta _u,\Pi {\varvec{\zeta } })-(R_{\varvec{\omega }},\Pi {\varvec{\zeta } }-{\varvec{\zeta } })-(R_{\varvec{\omega }},{\varvec{\zeta } }). \end{aligned}$$

Similarly as (6.4), we derive

$$\begin{aligned} -(R_{\varvec{\omega }},{\varvec{\zeta } })=-(R_{\varvec{\omega }},\nabla \varphi )=&-(R_{\varvec{\omega }},\nabla (\varphi -P\varphi ))-(R_{\varvec{\omega }},\nabla P\varphi )\nonumber \\ =&(\nabla \cdot R_{\varvec{\omega }},\varphi -P\varphi )-<R_{\varvec{\omega }}\cdot {{\varvec{n}}},\varphi -P\varphi>\nonumber \\&-H^{+}(R_{\varvec{\omega }},P\varphi )-<{\hat{R}}_{\varvec{\omega }}\cdot {{\varvec{n}}},P\varphi>\nonumber \\ =&(\nabla \cdot R_{\varvec{\omega }},\varphi -P\varphi )-<(R_{\varvec{\omega }}-{\hat{R}}_{\varvec{\omega }})\cdot {{\varvec{n}}},\varphi -P\varphi >\nonumber \\&+(R_q,P\varphi -\varphi )+(R_q,\varphi ), \end{aligned}$$
(6.5)

where the second line holds by integrating by parts, the third line uses the definition of \(H^{+}\) and the fourth line uses the fact that \(<{\hat{R}}_{\varvec{\omega }}\cdot {{\varvec{n}}},\varphi >=0\), since \(\varphi \) is continuous and we consider the periodic boundary condition. In addition, we adopt (2.17), (6.1c) for the last line. Along the same line to obtain (6.4)–(6.5), we have

$$\begin{aligned} (R_q,\varphi )&=(\eta _q,\nabla \cdot {\varvec{\theta } })-H^{-}(\eta _q,\Pi {\varvec{\theta } })-(R_{{\varvec{s}}},\Pi {\varvec{\theta } }-{\varvec{\theta } })-(R_{{\varvec{s}}},{\varvec{\theta } }),\\ -(R_{{\varvec{s}}},{\varvec{\theta } })&=(\sigma -P\sigma ,\nabla \cdot R_{{\varvec{s}}})-<(R_{{\varvec{s}}}-{\hat{R}}_{{\varvec{s}}})\cdot {{\varvec{n}}},\sigma -P\sigma >. \end{aligned}$$

Thus we complete the proof by combining the above equalities. \(\square \)

Now we are ready to prove the optimal error estimates of the elliptic projections. Take \(z=PR_u\) in (6.3) and denote each line of the right hand in (6.3) by \({\mathcal {S}}_i\), \(i=1,2,3,4\). Then the approximation properties (2.18)–(2.19) and the triangle inequality yield

$$\begin{aligned} {\mathcal {S}}_1\le Ch^{k+1}(\Vert \Pi {\varvec{\zeta } }\Vert +\Vert \Pi {\varvec{\theta } }\Vert )\le Ch^{k+1}(\Vert {\varvec{\zeta } }\Vert _{H^1(\Omega )}+\Vert {\varvec{\theta } }\Vert _{H^3(\Omega )}). \end{aligned}$$

By Cauchy–Schwarz inequality and (2.18), we derive

$$\begin{aligned} {\mathcal {S}}_2&\le C\Vert R_{\varvec{\omega }}\Vert h^{\min \{1,k+1\}}\Vert {\varvec{\zeta } }\Vert _{H^1(\Omega )}+C\Vert R_q\Vert h^{\min \{2,k+1\}}\Vert \varphi \Vert _{H^2(\Omega )}\\&\quad +C\Vert R_{{\varvec{s}}}\Vert h^{\min \{3,k+1\}}\Vert {\varvec{\theta } }\Vert _{H^3(\Omega )}\\&\le Ch(\Vert PR_u\Vert +h^{k+1})(\Vert {\varvec{\zeta } }\Vert _{H^1(\Omega )}+\Vert \varphi \Vert _{H^2(\Omega )}+\Vert {\varvec{\theta } }\Vert _{H^3(\Omega )}) \end{aligned}$$

for \(k\ge 1\). Here we use the estimates in Lemma 6.1. It follows from the triangle inequality, the inverse inequality, the property (2.18) and Lemma 6.1 that

$$\begin{aligned} {\mathcal {S}}_3&\le \Vert \varphi -P\varphi \Vert (\Vert \nabla \cdot \eta _{\varvec{\omega }}\Vert +\Vert \nabla \cdot \Pi R_{\varvec{\omega }}\Vert )+\Vert \sigma -P\sigma \Vert (\Vert \nabla \cdot \eta _{{\varvec{s}}}\Vert +\Vert \nabla \cdot \Pi R_{{\varvec{s}}}\Vert )\\&\le Ch^{\min \{1,k\}}\Vert \varphi \Vert _{H^2(\Omega )}(h^{k+1}+\Vert \Pi R_{\varvec{\omega }}\Vert )+Ch^{\min \{3,k\}}\Vert \sigma \Vert _{H^4(\Omega )}(h^{k+1}+\Vert \Pi R_{{\varvec{s}}}\Vert )\\&\le Ch(\Vert PR_u\Vert +h^{k+1})(\Vert \varphi \Vert _{H^2(\Omega )}+\Vert \sigma \Vert _{H^4(\Omega )}). \end{aligned}$$

For the last term \({\mathcal {S}}_4\), we adopt (2.18) and Lemma 6.1 to obtain

$$\begin{aligned} {\mathcal {S}}_4&\le \Vert R_{\varvec{\omega }}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\Vert \varphi -P\varphi \Vert _{{\mathcal {E}}_h}+\Vert R_{{\varvec{s}}}\cdot {{\varvec{n}}}\Vert _{{\mathcal {E}}_h}\Vert \sigma -P\sigma \Vert _{{\mathcal {E}}_h}\\&\le Ch^{\min \{1,k\}}\Vert \varphi \Vert _{H^2(\Omega )}(h^{k+1}+\Vert PR_u\Vert )+Ch^{\min \{3,k\}}\Vert \sigma \Vert _{H^4(\Omega )}h^{k+1}\\&\le Ch(\Vert PR_u\Vert +h^{k+1})(\Vert \varphi \Vert _{H^2(\Omega )}+\Vert \sigma \Vert _{H^4(\Omega )}). \end{aligned}$$

Adding the estimates of \({\mathcal {S}}_i\), \(i=1,2,3,4\) to the equality (6.3) and by the elliptic regularity (3.27), we have

$$\begin{aligned} \Vert PR_u\Vert ^{2}&\le Ch(\Vert PR_u\Vert +h^{k+1})(\Vert {\varvec{\zeta } }\Vert _{H^1(\Omega )}+\Vert \varphi \Vert _{H^2(\Omega )}+\Vert {\varvec{\theta } }\Vert _{H^3(\Omega )}+\Vert \sigma \Vert _{H^4(\Omega )})\\&\le CC_{*}h(\Vert PR_u\Vert +h^{k+1})\Vert PR_u\Vert . \end{aligned}$$

Thus we can obtain the optimal error estimate (3.28) of the elliptic projection by the Young’s equality, the triangle inequality and Lemma 6.1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Guo, R. Optimal Error Estimates of the Local Discontinuous Galerkin Method and High-order Time Discretization Scheme for the Swift–Hohenberg Equation. J Sci Comput 93, 46 (2022). https://doi.org/10.1007/s10915-022-02014-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02014-3

Keywords

Navigation