Skip to main content
Log in

A Symmetric Fractional-order Reduction Method for Direct Nonuniform Approximations of Semilinear Diffusion-wave Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a symmetric fractional-order reduction (SFOR) method to construct numerical algorithms on general nonuniform temporal meshes for semilinear fractional diffusion-wave equations. By using the novel order reduction method, the governing problem is transformed to an equivalent coupled system, where the explicit orders of time-fractional derivatives involved are all \(\alpha /2\) \((1<\alpha <2)\). The linearized L1 scheme and Alikhanov scheme are then proposed on general time meshes. Under some reasonable regularity assumptions and weak restrictions on meshes, the optimal convergence is derived for the two kinds of difference schemes by \(H^2\) energy method. An adaptive time stepping strategy which based on the (fast linearized) L1 and Alikhanov algorithms is designed for the semilinear diffusion-wave equations. Numerical examples are provided to confirm the accuracy and efficiency of proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from all of the authors upon reasonable request.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cuesta, E., Kirane, M., Malik, S.A.: Image structure preserving denoising using generalized fractional time integrals. Signal Process. 92, 553–563 (2012)

    Article  Google Scholar 

  4. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuesta, E., Palencia, C.: A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties. SIAM J. Numer. Anal. 41, 1232–1241 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gomez, H., Hughes, T.J.R.: Provably unconditionally stable, second-order time-accurate, mixedvariational methods for phase-field models. J. Comput. Phys. 230, 5310–5327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, B., Li, B., Zhou, Z.: Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138, 101–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp. 88, 2135–2155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, B., Wang, T., Xie, X.: Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equations with nonsmooth data. J. Sci. Comput. 82, 4 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., Wang, T., Xie, X.: Analysis of the L1 scheme for fractional wave equations with nonsmooth data. arXiv:1908.09145v2 [math.NA]

  15. Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao, H.L., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem, Commun. Comput. Phys. 30, 567–601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Meth. Part. Differ. Equ. 26, 37–60 (2010)

    MATH  Google Scholar 

  19. Liao, H.L., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 141, 109473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao, H.L., Yan, Y., Zhang, J.: Unconditional convergence of a two-level linearized fast algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80, 957–992 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  25. Mainardi, F., Paradisi, P.: Fractional diffusive waves. J. Comput. Acoust. 9, 1417–1436 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. McLean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24, 239–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation, IMA. J. Numer. Anal. 30, 208–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Nmer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nigmatullin, R.R.: To the theoretical explanation of the Universal Response. Phys. B 123, 739–745 (1984)

    Google Scholar 

  32. Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York, London (1974)

    MATH  Google Scholar 

  33. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  34. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shen, J., Stynes, M., Sun, Z.Z.: Two finite difference schemes for multi-dimensional fractional wave equations with weakly singular solutions, Comput. Methods. Appl. Math. 21, 913–928 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, W., Li, J., Yang, Y.: A fractional diffusion-wave equation with non-local regularization for image denoising. Signal Process. 103, 6–15 (2014)

    Article  Google Scholar 

  41. Zorich, V.A.: Mathematical Analysis I. Springer, Berlin (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Hong-lin Liao for his great help on the design of the SFOR method and constructive discussions on the preparation of this manuscript and its revision. They also would like to thank the referees for their valuable suggestions which lead to an improvement of this article.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seakweng Vong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the NSF of China (12101510 and 12071373), the NSF of Sichuan Province (2022NSFSC1789) and Guanghua Talent Project of SWUFE.

The second author is funded by the University of Macau (File no. MYRG2020-00035-FST and MYRG2018-00047-FST)

6. Appendix: Truncation Error Analysis

6. Appendix: Truncation Error Analysis

According to [17, Lemma 3.8 and Theorem 3.9], we have the follow lemma on estimating the time weighted approximation.

Lemma 6.1

Assume that \(g\in C^2((0,T])\) and there exists a constant \(C_g>0\) such that

$$\begin{aligned} |g''(t)|\le C_g(1+t^{\sigma -2}), \quad 0<t\le T, \end{aligned}$$

where \(\sigma \in (0,1)\cup (1,2)\) is a regularity parameter. Denote the local truncation error of \(g^{n-\vartheta }\) (here \(\vartheta =\beta /2\)) by

$$\begin{aligned} {\tilde{{\mathcal {R}}}}^{n-\vartheta }=g(t_{n-\vartheta })-g^{n-\vartheta }, \quad 1\le n\le N. \end{aligned}$$

If the mesh assumption MA holds, then

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)}|{\tilde{{\mathcal {R}}}}^{j-\vartheta }|\le C_g\left( \tau _1^{\sigma +\beta }/\sigma +t_n^\beta \max _{2\le k\le n} t_{k-1}^{\sigma -2}\tau _k^2 \right) \le C\tau ^{\min \{\gamma \sigma ,2\}}. \end{aligned}$$

The following lemma is provided to analyze \((\mathcal{T}_f)_h^{n-\theta }\), which is analogous to Lemma 3.4 in [20].

Lemma 6.2

Assume that \(\eta \in C([0,T])\cap C^2((0,T])\) and there exists a constant \(C_u>0\) such that

$$\begin{aligned} |\eta ^{(k)}(t)|\le C_u(1+t^{\sigma -k}), \quad 0<t\le T,\quad k=1,2, \end{aligned}$$

where \(\sigma \in (0,1)\cup (1,2)\) is a regularity parameter. Assume further that the nonlinear function \(f(u,x,t)\in C^4({{\mathbb {R}}})\) with respect to u. Denote \(\eta ^n=\eta (t_n)\) and the local truncation error

$$\begin{aligned} \mathcal{R}_f^{n-\theta }:=f(\eta (t_{n-\theta }),x,t)-\left[ f(\eta ^{n-1},x,t)+(1-\theta )f'_u(\eta ^{n-1},x,t)\nabla _\tau \eta ^n\right] . \end{aligned}$$

If the assumption MA holds, then

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)}|{{\mathcal {R}}}_f^{j-\theta }|\le \left\{ \begin{array}{ll} C\tau ^{\min \{2\gamma \sigma ,2\}},\quad \theta =0;\\ C\tau ^{\min \{\gamma \sigma ,2\}},\quad \theta =\frac{\beta }{2}; \end{array} \quad 1\le n\le N. \right. \end{aligned}$$

Proof

Denote \(\mathcal{R}_\eta ^{n-\theta }:=\eta (t_{n-\theta })-\eta ^{n-\theta }\). We have \({{\mathcal {R}}}_\eta ^{n-\theta }=0\) while \(\theta =0\). By the Taylor expansion, we have

$$\begin{aligned} {{\mathcal {R}}}_f^{n-\theta } =&f_u'(\eta ^{n-1}){{\mathcal {R}}}_\eta ^{n-\theta }\\&+\left( (1-\theta )\nabla _\tau \eta ^n+\mathcal{R}_\eta ^{n-\theta }\right) ^2\int _0^1f''_u\left( \eta ^{n-1}+s (\eta (t_{n-\theta })-\eta ^{n-1}),x,t\right) (1-s)\,\mathrm {d}s. \end{aligned}$$

Following the proof of [20, Lemma 3.4] and using Lemma 6.1, the desired result holds immediately. \(\square \)

For \(\mathbf{x}\in \Omega \), let \(\xi ^n(\mathbf{x})\) be a spatially continues function and denote \(\xi ^n_h:=\xi ^n(\mathbf{x}_h)\). One may apply the Taylor expansion to get

$$\begin{aligned} \Delta _h \xi ^n_h=&\int _0^1\left[ \partial _{xx}\xi ^n(x_i-sh_x,y_j)+\partial _{xx}\xi ^n(x_i+sh_x,y_j) \right] (1-s)\,\mathrm {d}s\\&+\int _0^1\left[ \partial _{yy}\xi ^n(x_i,y_j-sh_y)+\partial _{yy}\xi ^n(x_i,y_j+sh_y) \right] (1-s)\,\mathrm {d}s, \quad 1\le n\le N. \end{aligned}$$

Then we define a function \({{\mathcal {T}}}_f^{n}(\mathbf{x})\) by \((\mathcal{T}_f)_h^{n}={{\mathcal {T}}}_f^{n}(\mathbf{x}_h)\). If the assumptions in (1.5) and MA are satisfied, by Lemma 6.2 and the differential formula of composite function, we can obtain

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)}\Vert \Delta _h({{\mathcal {T}}}_f)^{n-\theta }\Vert \le \left\{ \begin{array}{ll} C\tau ^{\min \{2\gamma \sigma _1,2\}},\quad \theta =0;\\ C\tau ^{\min \{\gamma \sigma _1,2\}},\quad \theta =\frac{\beta }{2}; \end{array} \quad 1\le n\le N. \right. \end{aligned}$$
(6.1)

For the spatial error, based on the regularity condition, it is easy to know that

$$\begin{aligned} \Vert {{\mathcal {S}}}^{n}\Vert \le C_uh^2, \quad 1\le n\le N. \end{aligned}$$
(6.2)

Then, by using (3.9),

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)} \Vert ({{\mathcal {D}}}_\tau ^{\beta }\mathcal{S})^{j}\Vert \le \sum _{j=1}^n P_{n-j}^{(n)}\sum _{k=1}^jA_{j-k}^{(j)}\Vert \nabla _\tau \mathcal{S}^{k}\Vert&{=\sum _{k=1}^n\Vert \nabla _\tau \mathcal{S}^{k}\Vert \sum _{j=k}^nP_{n-j}^{(n)}A_{j-k}^{(j)}}\nonumber \\&=\sum _{k=1}^n\Vert \nabla _\tau {{\mathcal {S}}}^{k}\Vert \le C_u(1+t_{n}^{\sigma _1-1})h^2. \end{aligned}$$
(6.3)

We now consider the temporal truncation errors \((\mathcal{T}_{v1})_h^{n-\theta }\), \(({{\mathcal {T}}}_{w})_h^{n-\theta }\), \((\mathcal{T}_{u})_h^{n-\theta }\) and \(({{\mathcal {T}}}_{v2})_h^{n-\theta }\) in two situations: \(\theta =0\) and \(\theta =\beta /2\).

For a function g(t), define the global error

$$\begin{aligned} {{\mathcal {R}}}^{n-\theta }:=({{\mathcal {D}}}_t^\beta g)(t_{n-\theta })-({{\mathcal {D}}}_{\tau }^\beta g)^{n-\theta },\quad 1\le n\le N. \end{aligned}$$

For L1 approximation (\(\theta =0\)): We have \((\mathcal{T}_w)_h^{n}=({{\mathcal {T}}}_{v2})_h^{n}=0\) in this situation.

According to [15, Lemma 3.3] and [20, Lemma 3.3], the global consistency error of the L1 approximation can be presented in the following lemma.

Lemma 6.3

Assume that \(g\in C^2((0,T])\) and there exists a constant \(C_g>0\) such that

$$\begin{aligned} |g''(t)|\le C_g(1+t^{\sigma -2}), \quad 0<t\le T, \end{aligned}$$

where \(\sigma \in (0,1)\cup (1,2)\) is a regularity parameter. If the assumption MA holds, it follows that

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)}|{{\mathcal {R}}}^j|\le C_g\left( \tau _1^\sigma /\sigma +\frac{1}{1-\beta }\max _{2\le k\le n}(t_k-t_1)^\beta t_{k-1}^{\sigma -2}\tau _k^{2-\beta } \right) \le C\tau ^{\min \{2-\beta ,\gamma \sigma \}}. \end{aligned}$$

Define the functions \({{\mathcal {T}}}_{v1}^{n}(\mathbf{x})\) and \(\mathcal{T}_u^{n}(\mathbf{x})\) by \(({{\mathcal {T}}}_{v1})_h^n:={{\mathcal {T}}}_{v1}^{n}(\mathbf{x}_h)\) and \(({{\mathcal {T}}}_{u})_h^n:={{\mathcal {T}}}_u^{n}(\mathbf{x}_h)\) respectively. Using similar techniques for (6.1), and Lemma 6.3 with the in assumptions (1.5) and MA, we have

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)}\Vert \Delta _h{{\mathcal {T}}}_{v1}^{n}\Vert \le C\tau ^{\min \{2-\beta ,\gamma \sigma _2\}} \quad \text{ and } \quad \sum _{j=1}^n P_{n-j}^{(n)}\Vert \Delta _h{{\mathcal {T}}}_{u}^{n}\Vert \le C\tau ^{\min \{2-\beta ,\gamma \sigma _1\}}. \end{aligned}$$
(6.4)

For Alikhanov approximation (\(\theta =\beta /2\)):

The global consistency error estimate of the Alikhanov approximation is estimated in the next lemma.

Lemma 6.4

([17, Lemma 3.6]) Assume that \(g\in C^3((0,T])\) and there exists a constant \(C_g>0\) such that

$$\begin{aligned} |g'''(t)|\le C_g(1+t^{\sigma -3}), \quad 0<t\le T, \end{aligned}$$

where \(\sigma \in (0,1)\cup (1,2)\) is a regularity parameter. Then

$$\begin{aligned} \sum _{j=1}^n P_{n-j}^{(n)}|{{\mathcal {R}}}^{j-\theta }|\le C_g\left( \tau _1^\sigma /\sigma +t_1^{\sigma -3}\tau _2^3+\frac{1}{1-\beta }\max _{2\le k\le n}t_k^\beta t_{k-1}^{\sigma -3}\tau _k^3/\tau _{k-1}^\beta \right) . \end{aligned}$$

By Lemmas 6.4, 6.1, the assumptions in (1.5) and MA, it is easy to get that

$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)} \Vert \Delta _h({{\mathcal {T}}}_{v1})_h^{j-\theta }\Vert \le C\left( \tau _1^{\sigma _2}+\tau _2^3\tau _1^{\sigma _2-3}+\max _{2\le k\le n} (t_k-t_1)^{\beta }t_{k-1}^{\sigma _2-3}\tau _k^{3-\beta } \right) \le C\tau ^{\min \{3-\beta ,\gamma \sigma _2\}}, \end{aligned}$$
(6.5)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)} \Vert \Delta _h({{\mathcal {T}}}_u)_h^{j-\theta }\Vert \le C\left( \tau _1^{\sigma _1}+\tau _2^3\tau _1^{\sigma _1-3}+\max _{2\le k\le n} (t_k-t_1)^{\beta }t_{k-1}^{\sigma _1-3}\tau _k^{3-\beta } \right) \le C\tau ^{\min \{3-\beta ,\gamma \sigma _1\}}, \end{aligned}$$
(6.6)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)} \Vert \Delta _h({{\mathcal {T}}}_w)_h^{j-\theta }\Vert \le C\left( \tau _1^{\sigma _1+\beta }+\max _{2\le k\le n} t_{k-1}^{\sigma _1-2}\tau _k^2 \right) \le C\tau ^{\min \{2,\gamma \sigma _1\}}, \end{aligned}$$
(6.7)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)} \Vert \Delta _h({{\mathcal {T}}}_{v2})_h^{j-\theta }\Vert \le C\left( \tau _1^{\sigma _2+\beta }+\max _{2\le k\le n} t_{k-1}^{\sigma _2-2}\tau _k^2 \right) \le C\tau ^{\min \{2,\gamma \sigma _2\}}. \end{aligned}$$
(6.8)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, P., Vong, S. A Symmetric Fractional-order Reduction Method for Direct Nonuniform Approximations of Semilinear Diffusion-wave Equations. J Sci Comput 93, 34 (2022). https://doi.org/10.1007/s10915-022-02000-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02000-9

Keywords

Mathematics Subject Classification

Navigation