Skip to main content
Log in

Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper analyzes a time-stepping discontinuous Galerkin method for fractional diffusion-wave problems. This method uses piecewise constant functions in the temporal discretization and continuous piecewise linear functions in the spatial discretization. Nearly optimal convergence with respect to the regularity of the solution is established when the source term is nonsmooth, and nearly optimal convergence rate \( \scriptstyle \ln (1/\tau )(\sqrt{\ln (1/h)}h^2+\tau ) \) is derived under appropriate regularity assumption on the source term. Convergence is also established without smoothness assumption on the initial value. Finally, numerical experiments are performed to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  2. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  Google Scholar 

  4. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  5. Lubich, C., Sloan, I., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  6. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov–Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80(2), 957–992 (2019)

    Article  MathSciNet  Google Scholar 

  7. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30(1), 208–230 (2010)

    Article  MathSciNet  Google Scholar 

  8. McLean, W., Thomée, V.: Numerical solution via laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. 22(1), 57–94 (2010)

    Article  MathSciNet  Google Scholar 

  9. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive type memory term. J. Aust. Math. Soc. Ser. B Appl. Math. 35(1), 23–70 (1993)

    Article  MathSciNet  Google Scholar 

  10. McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69(1), 49–69 (1996)

    Article  MathSciNet  Google Scholar 

  11. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105(3), 481–510 (2007)

    Article  MathSciNet  Google Scholar 

  12. McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293(C), 201–217 (2015)

    Article  MathSciNet  Google Scholar 

  13. Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34(4), 1426–1446 (2014)

    Article  MathSciNet  Google Scholar 

  14. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78(268), 1975–1995 (2009)

    Article  MathSciNet  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, London (1993)

    MATH  Google Scholar 

  17. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  18. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Wood, D.: The computation of polylogarithms. Technical report. University of Kent (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (11901410, 11771312).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, T. & Xie, X. Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data. J Sci Comput 82, 4 (2020). https://doi.org/10.1007/s10915-019-01118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-019-01118-7

Keywords

Navigation