Skip to main content
Log in

Generalized Fractional Algebraic Linear System Solvers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to the numerical computation of algebraic linear systems involving several matrix power functions; that is finding x solution to \(\sum _{\alpha \in \mathbb {R}}A^{\alpha }x=b\). These systems will be referred to as Generalized Fractional Algebraic Linear Systems (GFALS). In this paper, we derive several gradient methods for solving these very computationally complex problems, which themselves require the solution to intermiediate standard Fractional Algebraic Linear Systems (FALS) \(A^{\alpha }x=b\), with \(\alpha \in \mathbb {R_+}\). The latter usually require the solution to many classical linear systems \(Ax=b\). We also show that in some cases, the solution to a GFALS problem can be obtained as the solution to a first-order hyperbolic system of conservation laws. We also discuss the connections between this PDE-approach and gradient-type methods. The convergence analysis is addressed and some numerical experiments are proposed to illustrate and compare the methods which are proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Achar, B.N., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. 2013, 290216 (2013)

    Article  Google Scholar 

  2. Antoine, X., Besse, C., Duboscq, R., Rispoli, V.: Acceleration of the imaginary time method for spectrally computing the stationary states of Gross–Pitaevskii equations. Comput. Phys. Commun. 219, 70–78 (2017)

    Article  MathSciNet  Google Scholar 

  3. Antoine, X., Lorin, E.: Double-preconditioning for fractional linear systems. Application to fractional Poisson equations, Submitted (2020)

  4. Antoine, X., Lorin, E.: ODE-based double-preconditioning for solving linear systems \({A}^{\alpha }x = b\) and \(f({A})x=b\). Numer. Lin. Alg. with App. 28,(6) (2021)

  5. Antoine, X., Lorin, E., Zhang, Y.: Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers. Numerical Algorithms, 87, 2021

  6. Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)

    Article  MathSciNet  Google Scholar 

  7. Bologna, M., West, B., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2002)

    Google Scholar 

  8. Bao, W., Dong, X.: Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)

    Article  MathSciNet  Google Scholar 

  9. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, (2007). First-order systems and applications

  10. Bhatti, M.: Fractional Schrödinger wave equation and fractional uncertainty principle. Int. J. Contem. Math. Sci. 2, 943–950 (2007)

    Article  Google Scholar 

  11. Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)

    Article  Google Scholar 

  12. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 4th edn. Springer-Verlag, Berlin (2016)

    Google Scholar 

  14. Davies, P.I., Higham, N.J.: Computing \(f({A})b\) for matrix functions \(f\). In: QCD and Numerical Analysis III, volume 47 of Lect. Notes Comput. Sci. Eng., pp. 15–24. Springer, Berlin (2005)

  15. Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)

    Article  MathSciNet  Google Scholar 

  16. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60, 500–545 (2007)

    Article  MathSciNet  Google Scholar 

  17. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2010)

    MATH  Google Scholar 

  18. Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix \(p\)th root and its inverse. SIAM J. Matrix Anal. Appl. 28(3), 788–804 (2006)

    Article  MathSciNet  Google Scholar 

  19. Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({A}^\alpha, \log ({A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)

    Article  MathSciNet  Google Scholar 

  20. Higham, N.J.: Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2008). Theory and computation

  21. Iannazzo, B.: On the Newton method for the matrix \(p\)th root. SIAM J. Matrix Anal. Appl. 28(2), 503–523 (2006)

    Article  MathSciNet  Google Scholar 

  22. Jonsson, B.L.G., Fröhlich, J., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity 20, 1031–1075 (2007)

    Article  MathSciNet  Google Scholar 

  23. Kenney, C., Laub, A.J.: Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 12(2), 273–291 (1991)

    Article  MathSciNet  Google Scholar 

  24. Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Phys. D Nonlinear Phenom. 332, 41–54 (2016)

    Article  Google Scholar 

  25. Kusnezov, D., Bulgac, A., Dang, G.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1129 (1999)

    Article  Google Scholar 

  26. Laskin, N.: Fractals and quantum mechanics. Chaos 10, 780–790 (2000)

    Article  MathSciNet  Google Scholar 

  27. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  Google Scholar 

  28. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–304 (2000)

    Article  MathSciNet  Google Scholar 

  29. Laszkiewicz, B., Zietak, K.: A Padé family of iterations for the matrix sector function and the matrix \(p\)th root. Numer. Linear Algebra Appl. 16(11–12), 951–970 (2009)

    Article  MathSciNet  Google Scholar 

  30. LeFloch, P.G.: Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. The theory of classical and nonclassical shock waves

  31. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Em Karniadakis, G.: What is the fractional Laplacian? a comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    Article  MathSciNet  Google Scholar 

  32. Lomin, A.: Fractional-time quantum dynamics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  Google Scholar 

  33. Lorin, E., Tian, S.: A numerical study of fractional linear algebraic system solvers. Submitted., (2020)

  34. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  Google Scholar 

  35. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  Google Scholar 

  36. Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)

    Article  Google Scholar 

  37. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Texts in Applied Mathematics, vol. 37. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  38. Saad, Y., Schultz, M.H.: GMRES—a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  39. Smith, M.I.: A Schur algorithm for computing matrix \(p\)th roots. SIAM J. Matrix Anal. Appl. 24(4), 971–989 (2003)

    Article  MathSciNet  Google Scholar 

  40. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, (1989)

  41. Tarasov, V.: Fractional Heisenberg equation. Phys. Lett. A 372, 2984–2988 (2006)

    Article  MathSciNet  Google Scholar 

  42. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin (1999)

    Book  Google Scholar 

  43. Tsai, J.S.H., Shieh, L.S., Yates, R.E.: Fast and stable algorithms for computing the principal \(n\)th root of a complex matrix and the matrix sector function. Comput. Math. Appl. 15(11), 903–913 (1988)

    Article  MathSciNet  Google Scholar 

  44. Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007)

    Article  MathSciNet  Google Scholar 

  45. West, B.: Quantum Lévy propagators. J. Phys. Chem. B 104, 3830–3832 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

E.L. thanks NSERC for his support through the Discovery grant program and D.G. for inspiring discussions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lorin.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Accelerated FLS Solvers

A Accelerated FLS Solvers

To accelerate the ODE-based solver for FLS, we propose an original two-step preconditioning technique. The principle is relatively simple and consists in the following steps.

  • Construction of a preconditioner P such that \(P^{-1}A \approx I\), and such that P and A commute. We refer for instance to [6] where a large number of commuting preconditioners are derived for linear systems solved using a conjugate gradient method. Some of these preconditioners can naturally be used to other iterative Krylov-type solvers.

  • Construction on a fine mesh (step \(\delta \tau \), and \(J_{\tau }\) iterations such that \(J_{\tau }\delta \tau =1\)) of an approximation to \(P^{-\alpha }b\), by efficiently numerically solving on [0, 1] by an ODE-solver

    $$\begin{aligned} y'(\tau ) = -\alpha (P-I)\big (I+\tau (P-I)\big )^{-1}y(\tau ), \qquad y(0)=b \in \mathbb {R}^n\, . \end{aligned}$$
    (37)

    This provides a precise approximation \(\{y^{(j)}\}_j\) to \(y(\tau )=(I+\tau (P-I))^{-\alpha }b\), such that \(y(1)=P^{-\alpha }b\). Practically, the solution to linear systems involving P must be computed much faster than those involving A. Typically, P can be taken as incomplete-LU or Jacobi preconditioners as long as they commute with A.

  • Computation on a coarser mesh (step \(\varDelta T \gg \varDelta t\) and \(J_T\ll J_{\tau }\) iterations) with an ODE-solver of

    $$\begin{aligned} z'(\tau ) = -\alpha (A-P)\big (P+\tau (A-P)\big )^{-1}z(\tau ), \qquad z(0)=P^{-\alpha }b \in \mathbb {R}^n\, . \end{aligned}$$
    (38)

    This provides an accurate approximation \(\{z^{(j)}\}_j\), even on a coarse grid, to \(z(\tau )=(P+\tau (A-P))^{-\alpha }b\), such that \(z(1)=A^{-\alpha }b\). Notice that the commutativity of A and P is required in order to justify that z is indeed solution to (38). Practically, the initial data in (38) will be numerically given by the approximate solution \(y^{(J_T)}\) to y(1) in (37).

To analytically justify the approach and for the sake of simplicity, let us assume that solving a linear system involving P (resp. A) has a quadratic (cubic) complexity and that the equations (37) and (38) are solved by using a standard implicit Euler method (although in practice we will use higher order methods), i.e. there exists \(c(P)>0\) such that

$$\begin{aligned} \Vert y^{(J_T)}-P^{-\alpha }b\Vert\leqslant & {} c(P)\delta \tau \, . \end{aligned}$$

Hence a direct approach (4) has a complexity \(O(J_{\tau }n^3)\) on a fine mesh \(\delta \tau \), while the preconditioned approach developed here has a complexity \(O(J_{\tau }n^2 + J_T n^3)\), with \(J_{T}\ll J_{\tau }\). For instance, if \(J_{\tau }\propto n\), we gain an order of complexity. Regarding the accuracy of the preconditioned technique, let us denote by f the following matrix valued function involved in the original direct ODE-solver (4) and g the one appearing in (38)

$$\begin{aligned} f(\tau ) = -\alpha (I-A)(I+\tau (A-I))^{-1}, \, \, \, g(\tau ) = -\alpha (P-A)(P+\tau (A-P))^{-1} \, . \end{aligned}$$

Hence, we have

$$\begin{aligned} df(\tau ) = - \alpha (I-A)^2(I+\tau (A-I))^{-2}, \, \, \, dg(\tau ) = -\alpha (I-P^{-1}A)^2(I+\tau (P^{-1}A-I))^{-2} . \end{aligned}$$

Then denoting \(\varLambda _{f}:=\sup _{\tau \in [0,1]}\Vert df(\tau )\Vert \) and \(\varLambda _{g}:=\sup _{\tau \in [0,1]}\Vert dg(\tau )\Vert \), for \(P^{-1}A \approx I\), we get

$$\begin{aligned} \varLambda _g&\lessapprox&\alpha \Vert I-P^{-1}A\Vert ^2 \, . \end{aligned}$$

For instance, if we assume that A is positive definite, a precise estimate of \(\varLambda _f\) is easily obtained as

$$\begin{aligned} \varLambda _f= & {} \alpha \sup _{\tau \in [0,1]}\max _{1\leqslant i\leqslant n}\Big [\frac{1-\lambda _i}{1+\tau (\lambda _i-1)}\Big ]^2 \, . \end{aligned}$$

Beyond the order of convergence, the error of the method is typically dependent of \(\exp (\varLambda _{f,g}) \) (through the constant in the error estimate) [37]. As a consequence the smaller \(\varLambda _{f,g}\), the smaller the error. More precisely, for \(\{x^{(j)}\}_j\) (resp. \(\{z^{(j)}\}_j\)) approximate solution to (4) (resp. (38)), we obtain

$$\begin{aligned} \left. \begin{array}{lcl} \Vert x^{(J_{\tau })}-A^{-\alpha }b\Vert \leqslant \exp (\varLambda _f) \delta \tau \, , \, \, \, \Vert z^{(J_T)}-A^{-\alpha }b\Vert \leqslant \exp (\varLambda _g) (\Vert y^{(J_T)}-P^{-\alpha }b\Vert + \varDelta \tau ) \, . \end{array} \right. \end{aligned}$$

Although \(\varDelta \tau \gg \delta \tau \), this effect is counter-balanced by the fact that \(\exp (\varLambda _g) \ll \exp (\varLambda _f)\). Whenever we consider non-commutative preconditioners, the construction of efficient ODE-solvers for FLS is a bit more tricky, and in this case we again refer to [4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoine, X., Lorin, E. Generalized Fractional Algebraic Linear System Solvers. J Sci Comput 91, 25 (2022). https://doi.org/10.1007/s10915-022-01785-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01785-z

Keywords

Navigation