Skip to main content
Log in

Neighbor-Gradient Single-Pass Method for Solving Anisotropic Eikonal Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a single pass method for approximating the solution to an anisotropic eikonal equation related to the anisotropic min-time optimal trajectory problem. Ordered Upwind Method (OUM) solves this equation, which is a single-pass method with an asymptotic complexity. OUM uses the search along the accepted front (SAAF) to update the value at considered nodes. Our technique, which we refer to as “Neighbor-Gradient Single-Pass Method”, uses the minimizer of the Hamiltonian, in which the gradient is substituted with neighbor gradient information, to avoid SAAF. Our technique is considered in the context of control-theoretic problem. We begin by discussing SAAF of OUM. We then prove some properties of the value function and its gradient, which provide the key motivation for constructing our method. Based on these discussions, we present a new single-pass method, which is fast since it does not require SAAF. We test this method with several anisotropic eikonal equations to observe that it works well while significantly reducing the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York Inc (2003)

    Book  Google Scholar 

  2. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  3. Sethian, J. A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science,2 nd ed. In: Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press. (3) (1999)

  4. Cristiani, E.: A fast marching method for Hamilton-Jacobi equation modeling monotone front propagations. J. Sci. Comput. 39(2), 189–205 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chow, Y.T., Darbon, J., Osher, S., Yin, W.: Algorithm for overcoming the curse of dimensionality for time-dependent non-convex Hamilton-jacobi equations arising from optimal control and differential games problems. J. Sci. Comput. 73, 617–643 (2017)

    Article  MathSciNet  Google Scholar 

  6. Lelièvre, P.G., Farquharson, C.G., Hurich, C.A.: Computing first arrival seismic travel times on unstructured 3-D tetrahedral grids using the fast marching method. Geophys. J. Int. 184(2), 885–896 (2011)

    Article  Google Scholar 

  7. Tozza, S., Falcone, M.: Analysis and approximation of some shape-from-shading models for non-lambertian surfaces. J. Math. Imaging Vis. 55(2), 153–178 (2016)

    Article  MathSciNet  Google Scholar 

  8. Peyré, G., Péchaud, M., Keriven, R., Cohen, LD: Geodesic methods in computer vision and graphics, foundations and trends in computer graphics and vision, 5(3–4), 197–397 (2010)

  9. Cacace, S., Cristiani, E., Falcone, M.: Can local single-pass methods solve any stationary Hamilton–Jacobi–Bellman equation? SIAM J. Sci. Comput. 36, 570–587 (2014)

    Article  MathSciNet  Google Scholar 

  10. Falcone, M., Ferretti, R.: Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559–575 (2002)

    Article  MathSciNet  Google Scholar 

  11. Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67, 315–344 (1994)

    Article  MathSciNet  Google Scholar 

  12. Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the Eikonal equation and applications. SIAM J. Numer. Anal. 45(5), 1979–2011 (2007)

    Article  MathSciNet  Google Scholar 

  13. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control. 40, 1528–1538 (1995)

    Article  MathSciNet  Google Scholar 

  14. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  Google Scholar 

  15. Cacace, S., Cristiani, E., Falcone, M.: A local ordered upwind method for hamilton-jacobi and isaacs equations. In: Proceedings of 18th IFAC World Congress 2011, pp. 6800–6805

  16. Sethian, J.A., Vladmirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations, theory and algorithms. SIAM J. Numer. Anal. 41(1), 323–363 (2003)

    Article  MathSciNet  Google Scholar 

  17. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. 98(20), 11069–11074 (2001)

    Article  MathSciNet  Google Scholar 

  18. Shum, A., Morris, K., Khajepour, A.: Convergence Rate for the Ordered Upwind Method. J. Sci. Comput. 68(3), 889–913 (2016)

    Article  MathSciNet  Google Scholar 

  19. Alton, K.: Dijkstra-like Ordered Upwind Methods for Solving Static Hamilton-Jacobi Equations, Ph.D. thesis, University of British Columbia, Vancouver, 2010.

  20. Alton, K., Mitchell, I.M.: Fast marching methods for stationary Hamilton-Jacobi equations with axis-aligned anisotropy. SIAM J. Numer. Anal. 43, 363–385 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Alton, K., Mitchell, I.M.: An ordered upwind method with pre-computed stencil and monotone node acceptance for solving static convex Hamilton-Jacobi equations. J. Sci. Comput. 51, 313–348 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kao, C.Y., Osher, S., Tsai, Y.: Fast sweeping methods for static Hamilton-Jacobi equations. SIAM J. Numer. Anal. 42(6), 2004–2005 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kao, C.Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. J. Comput. Phys. 196, 367–439 (2004)

    Article  MathSciNet  Google Scholar 

  24. Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2004)

    Article  MathSciNet  Google Scholar 

  25. Qian, J., Zhang, Y.T., Zhao, H.: A fast sweeping method for static convex Hamilton-Jacobi equations. J. Sci. Comput. 31, 237–271 (2007)

    Article  MathSciNet  Google Scholar 

  26. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comp. 74, 603–627 (2005)

    Article  MathSciNet  Google Scholar 

  27. Qian, J., Zhang, Y., Zhao, H.: Fast sweeping methods for Eikonal equations on triangulated meshes. SIAM J. Numer. Anal. 45, 83–107 (2007)

    Article  MathSciNet  Google Scholar 

  28. Jeong, Fu.Z., Pan, W.K., Kirby, Y., Whitaker, R.M.: A fast iterative method for solving the eikonal equation on triangulated surfaces. SIAM J. Sci. Comput. 33, A2468–A2488 (2011)

    Article  MathSciNet  Google Scholar 

  29. Jeong, W.K., Whitaker, R.T.: A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 30, 2512–2534 (2008)

    Article  MathSciNet  Google Scholar 

  30. Jeong, W. K., Whitaker, R. T.: A fast iterative method for a class of Hamilton–Jacobi equations on parallel systems. University of Utah, Technical Report UUCS-07-010 (2007)

  31. Dahiya, D., Baskar, S.: Characteristic fast marching method on triangular grids for the generalized eikonal equation in moving media. Wave Motion 59, 81–93 (2015)

    Article  MathSciNet  Google Scholar 

  32. Dahiya, D., Baskar, S., Coulouvrat, F.: Characteristic fast marching method for monotonically propagating fronts in a moving medium. SIAM J. Sci. Comput. 35(4), A1880–A1902 (2013)

    Article  MathSciNet  Google Scholar 

  33. Glowinski, R., Leung, S., Qian, J.: Operator-splitting based fast sweeping methods for isotropic wave propagation in a moving fluid. SIAM J. Sci. Comput. 38(2), A1195–A1223 (2016)

    Article  MathSciNet  Google Scholar 

  34. Glowinski, R., Liu, H., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge–Ampère equation, 79(1), 1–47 (2019)

  35. Ho, M., Ri, J., Kim, S.: Improved characteristic fast marching method for the generalized eikonal equation in a moving medium. J. Sci. Comput. 81(3), 2484–2502 (2019)

    Article  MathSciNet  Google Scholar 

  36. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (1997)

    Book  Google Scholar 

  37. Sinestrari, C.: Semiconcavity of solutions of stationary Hamilton-Jacobi equations. Nonlinear. Anal. 24(9), 1321–1326 (1995)

    Article  MathSciNet  Google Scholar 

  38. Vladmirsky, A.: Fast Methods for Static Hamilton-Jacobi Partial Differential Equations, Ph.D. thesis, University of California, Berkeley, 2001.

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions, which helped the authors to improve the article significantly.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myong-Song Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

The viscosity solution \(u(x)\) of (6) is semi-concave.

Proof

Let us prove that \(H(x,p)\) is Lipchitz continuous in \(x\).

For arbitrary \(x,y\), suppose that.

$$ H(x,p) = - \mathop {\min }\limits_{{a \in S_{1} }} \{ p \cdot af(x,a)\} - 1 = - p \cdot a_{0} f(x,a_{0} ) - 1, $$
$$ H(y,p) = - \mathop {\min }\limits_{{a \in S_{1} }} \{ p \cdot af(y,a)\} - 1 = - p \cdot a_{1} f(y,a_{1} ) - 1. $$

If \(p \cdot a_{0} f(x,a_{0} ) \ge p \cdot a_{1} f(y,a_{1} )\), then.

$$ \begin{gathered} \left| {H(x,p) - H(y,p)} \right| = \left| {p \cdot a_{0} f(x,a_{0} ) - p \cdot a_{1} f(y,a_{1} )} \right| \hfill \\ \le \left| {p \cdot a_{0} f(y,a_{0} ) - p \cdot a_{0} f(x,a_{0} )} \right| \le \left\| p \right\|L\left\| {x - y} \right\| \hfill \\ \end{gathered} $$

If \(p \cdot a_{0} f(x,a_{0} ) < p \cdot a_{1} f(y,a_{1} )\), then.

$$ \begin{gathered} \left| {H(x,p) - H(y,p)} \right| = \left| {p \cdot a_{0} f(x,a_{0} ) - p \cdot a_{1} f(y,a_{1} )} \right| \hfill \\ \le \left| {p \cdot a_{1} f(x,a_{1} ) - p \cdot a_{1} f(y,a_{1} )} \right| \le \left\| p \right\|L\left\| {x - y} \right\| \hfill \\ \end{gathered} $$

Therefore \(H(x,p)\) is Lipchitz continuous in \(x\). We also know that \(H{(}x,p)\) is convex in the second argument and thus \(u\) is semi-concave in \(\Omega\). ([31]) □

Lemma 2

Assume that \(u\) is differentiable at \(x \in \Omega\) and suppose that \(\alpha ( \cdot )\) is an optimal control for \(x\) and \(y( \cdot )\) is the optimal trajectory for \(x\) . Then \(\nabla u(y( \cdot ))\) is continuous at \([0,\; + \infty )\) .

Proof

For arbitrary \(t > 0\), \(u\) is differentiable at \(y{(}t)\) because characteristics never emanate from the shocks-non differentiable point. ([16]).

If \(\nabla u\) is defined at \(x \in \Omega \backslash \partial \Omega\), there exists constant \(L\) such that \(\left\| {\nabla u} \right\| \le L\). [16].

We fix any \(t \ge 0\). For arbitrary sequence \(t_{n} \to t(t_{n} \ge 0)\), \(y{(}t_{n} ) \to y(t)\). The \(\nabla u(y(t_{n} ))\) is bounded. Therefore, it has convergent subsequence. Since \(u\) is semi-concave, limits of all convergent subsequences are the same.i.e.,\(\nabla u(y(t))\). [36] Therefore \(\nabla u(y(t_{n} )) \to \nabla u(y(t))\) and thus \(\nabla u(y( \cdot ))\) is continuous at \([0,\; + \infty )\). □

Lemma 3

Consider a grid node \(x \in X\) and assume that u is differentiable at \(x.\) Suppose that the characteristic for \(x\) intersects the line segment \(x_{1} x_{2}\) at \(x_{0}\) , where \(x_{1} ,x_{2} \in ND(x),\;x_{1} \in N(x_{2} )\) . Then.

$$ \left\| {\nabla u(x_{0} ) - \nabla u(x)} \right\| = O(h). $$

Proof

Suppose that \(\alpha ( \cdot )\) is an optimal control for \(x\) and \(y( \cdot )\) is the optimal trajectory for \(x\).

If \(y(t_{{0}} ) = x_{0}\), since \(\nabla u(y( \cdot ))\) is continuous at 0, we get.

$$ \left\| {\nabla u(y(t_{{0}} )) - \nabla u(y(0))} \right\| = O(t_{{0}} ). $$

By the Bellman’s optimality principle, we get \(t_{{0}} \le \frac{{x_{0} - x_{1} }}{{F_{2} }}\) and \(\frac{{x_{0} - x_{1} }}{{F_{1} }} \le t_{{0}}\).

Therefore \(O(t_{0} ) = O(h)\). From the fact that \(y(0) = x,y(t_{0} ) = x_{0}\), we conclude that.

\(\left\| {\nabla u(x_{0} ) - \nabla u(x)} \right\| = O(h) \, \).□

Lemma 4

If \(xx_{1} x_{2}\) is a sufficiently small simplex, which contains the characteristic for \(x\) , then.

$$ \min (u(x_{1} ),\;u(x_{2} )) < u(x). $$

Proof

By the Bellman’s optimality principle, we get.

$$ \begin{gathered} u(x) = u(x_{s} ) + \frac{{\left\| {x_{s} - x} \right\|}}{{f\left( {x,\,\,{{{(}x_{s} - x{)}} \mathord{\left/ {\vphantom {{{(}x_{s} - x{)}} {\left\| {x_{s} - x} \right\|}}} \right. \kern-\nulldelimiterspace} {\left\| {x_{s} - x} \right\|}}} \right)}} + O(h^{2} ) = \hfill \\ \lambda u(x_{1} ) + \left( {1 - \lambda } \right)u(x_{2} ) + \frac{{\left\| {x_{s} - x} \right\|}}{{f\left( {x,\,\,{{{(}x_{s} - x{)}} \mathord{\left/ {\vphantom {{{(}x_{s} - x{)}} {\left\| {x_{s} - x} \right\|}}} \right. \kern-\nulldelimiterspace} {\left\| {x_{s} - x} \right\|}}} \right)}} + O(h^{2} ). \hfill \\ \end{gathered} $$

Since \(xx_{1} x_{2}\) is sufficiently small simplex, we obtain that \(u(x) > \lambda u(x_{1} ) + \left( {1 - \lambda } \right)u(x_{2} )\).

Therefore, \(\min (u(x_{1} ),\;u(x_{2} )) < u(x)\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, MS., Pak, JS., Jo, SM. et al. Neighbor-Gradient Single-Pass Method for Solving Anisotropic Eikonal Equation. J Sci Comput 91, 33 (2022). https://doi.org/10.1007/s10915-022-01773-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01773-3

Keywords

Navigation