Skip to main content
Log in

Convergence Rate for the Ordered Upwind Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The ordered upwind method (OUM) is used to approximate the viscosity solution of the static Hamilton–Jacobi–Bellman with direction-dependent weights on unstructured meshes. The method has been previously shown to provide a solution that converges to the exact solution, but no convergence rate has been theoretically proven. In this paper, it is shown that the solutions produced by the OUM in the boundary value formulation converge at a rate of at least the square root of the largest edge length in the mesh in terms of maximum error. An example with similar order of numerical convergence is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alton, K.: Dijkstra-Like Ordered Upwind Methods for Solving Static Hamilton–Jacobi Equations. Ph.D. thesis, University of British Columbia (2010)

  2. Alton, K., Mitchell, I.: An ordered upwind method with precomputed stencil and monotone node acceptance for solving static convex Hamilton–Jacobi equations. J. Sci. Comput. 51, 313–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angell, T.: Notes on Convex Sets. http://www.math.udel.edu/~angell/Opt/convex (2011). Accessed 5 Aug 2013

  4. Augoula, S., Abgrall, R.: High order numerical discretization for Hamilton–Jacobi equations on triangular meshes. J. Sci. Comput. 15, 197–229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  6. Bardi, M., Falcone, M.: Discrete approximation of the minimal time function for systems with regular optimal trajectories. In: Analysis and Optimation of Systems: Lecture Notes in Control and Information Sciences, vol. 144, pp. 103–112 (1990)

  7. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York (2005)

    Google Scholar 

  8. Cameron, M.K.: Estimation of reactive fluxes in gradient stochastic systems using an analogy with electric circuits. J. Comput. Phys. 247, 137–152 (2013)

    Article  MathSciNet  Google Scholar 

  9. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43, 1–19 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cristiani, E.: A fast marching method for Hamilton–Jacobi equations modeling monotone front propagation. J. Sci. Comput. 39, 189–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engwirda, D.: MESH2D—Automatic Mesh Generation (2011)

  13. Evans, L.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  14. Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton–Jacobi–Bellman equations. Numer. Math. 67, 315–344 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frew, E.: Combining area patrol, perimeter surveillance, and target tracking using ordered upwind methods. In: IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3123–3128 (2009)

  16. Gonzalez, R., Rofman, E.: On deterministic control problems: an approximation procedure for the optimal cost I. The stationary problem. SIAM J. Control Optim. 23, 242–266 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hjelle, O., Petersen, A.: A Hamilton–Jacobi framework for modeling folds in structural geology. Math. Geosci. 43, 741–761 (2011)

    Article  MATH  Google Scholar 

  18. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95, 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumar, A., Vladimirsky, A.: An efficient method for multiobjective optimal control and optimal control subject to integral constraints. J. Comput. Math. 28, 517–551 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Monneau, R.: Introduction to the Fast Marching Method. Technical Report, Centre International de Mathématiques Pures et Appliqués (2010)

  21. Sethian, J., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shum, A., Morris, K.A., Khajepour, A.: Direction-dependent optimal path planning for autonomous vehicles. Robot. Auton. Syst. 70, 202–214 (2015)

    Article  Google Scholar 

  23. Souganidis, P.: Approximation scheme for viscosity solutions of Hamilton–Jacobi equations. J. Differ. Equ. 59, 1–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Valero-Gómez, A., Gómez, J.V., Garrido, S., Moreno, L.: The path to efficiency: fast marching method for safer, more efficient mobile robot trajectories. IEEE Robot. Autom. Mag. 20(4), 111–120 (2013)

    Article  Google Scholar 

  25. Vladimirsky, A.: Fast Methods for Static Hamilton–Jacobi Partial Differential Equations. Ph.D. thesis, University of Califoria, Berkeley (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Shum.

Additional information

This work has been supported by the Ontario Government, and Natural Sciences and Engineering Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shum, A., Morris, K. & Khajepour, A. Convergence Rate for the Ordered Upwind Method. J Sci Comput 68, 889–913 (2016). https://doi.org/10.1007/s10915-016-0163-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0163-3

Keywords

Navigation