Skip to main content
Log in

A Multigrid Multilevel Monte Carlo Method for Stokes–Darcy Model with Random Hydraulic Conductivity and Beavers–Joseph Condition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A multigrid multilevel Monte Carlo (MGMLMC) method is developed for the stochastic Stokes–Darcy interface model with random hydraulic conductivity both in the porous media domain and on the interface. Three interface conditions with randomness are considered on the interface between Stokes and Darcy equations, especially the Beavers–Joesph interface condition with random hydraulic conductivity. Because the randomness through the interface affects the flow in the Stokes domain, we investigate the coupled stochastic Stokes–Darcy model to improve the fidelity. Under suitable assumptions on the random coefficient, we prove the existence and uniqueness of the weak solution of the variational form. To construct the numerical method, we first adopt the Monte Carlo (MC) method and finite element method, for the discretization in the probability space and physical space, respectively. In order to improve the efficiency of the classical single-level Monte Carlo (SLMC) method, we adopt the multilevel Monte Carlo (MLMC) method to dramatically reduce the computational cost in the probability space. A strategy is developed to calculate the number of samples needed in MLMC method for the stochastic Stokes–Darcy model. In order to accomplish the strategy for MLMC method, we also present a practical method to determine the variance convergence rate for the stochastic Stokes–Darcy model with Beavers–Joseph interface condition. Furthermore, MLMC method naturally provides the hierarchical grids and sufficient information on these grids for multigrid (MG) method, which can in turn improve the efficiency of MLMC method. In order to fully make use of the dynamical interaction between this two methods, we propose a multigrid multilevel Monte Carlo (MGMLMC) method with finite element discretization for more efficiently solving the stochastic model, while additional attention is paid to the interface and the random Beavers–Joesph interface condition. The computational cost of the proposed MGMLMC method is rigorously analyzed and compared with the SLMC method. Numerical examples are provided to verify and illustrate the proposed method and the theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Arbogast, T., Gomez, M.: A discretization and multigrid solver for a Darcy–Stokes system of three dimensional Vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling Vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armentano, M.G., Stockdale, M.L.: Approximations by mini mixed finite element for the Stokes–Darcy coupled problem on curved domains. Int. J. Numer. Anal. Mod. 18, 203–234 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Gatica, G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baccouch, M.: A finite difference method for stochastic nonlinear second-order boundary-value problems driven by additive noises. Int. J. Numer. Anal. Mod. 17(3), 368–389 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, F., Cao, Y., Webster, C., Zhang, G.: A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations. SIAM/ASA J. Uncertain. Quantif. 2(1), 784–804 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)

    Article  MATH  Google Scholar 

  11. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 199(1), 123–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  13. Boubendir, Y., Tlupova, S.: Stokes–Darcy boundary integral solutions using preconditioners. J. Comput. Phys. 228(23), 8627–8641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes–Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35(1), B82–B106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bramble, J.H.: Multigrid Methods, Pitman Research Notes in Mathematics Series, vol. 294. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1993)

  16. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (1994)

    Book  MATH  Google Scholar 

  17. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industral and Appllied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

  18. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes–Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Camano, J., Gatica, G.N., Oyarzua, R., Ruiz-Baier, R., Venegas, P.: New fully-mixed finite element methods for the Stokes–Darcy coupling. Comput. Methods Appl. Mech. Eng. 295, 362–395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao, Y., Chu, Y., He, X.M., Wei, M.: Decoupling the stationary Navier-Stokes-Darcy system with the Beavers–Joseph–Saffman interface condition. Abstr. Appl. Anal. Article ID 136,483, 10 pages (2013)

  21. Cao, Y., Gunzburger, M., He, X.M., Wang, X.: Robin-Robin domain decomposition methods for the steady Stokes–Darcy model with Beaver–Joseph interface condition. Numer. Math. 117(4), 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cao, Y., Gunzburger, M., He, X.M., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comput. 83(288), 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 47(6), 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8(1), 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Çeşmelio\(\breve{\text{g}}\)lu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)

  26. Çeşmelio\(\breve{\text{ g }}\)lu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem. J. Differ. Equations 252(7), 4138–4175 (2012)

  27. Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, L., Hu, X., Wang, M., Xu, J.: A multigrid solver based on distributive smoother and residual overweighting for Oseen problems. Numer. Math. Theor. Methods Appl. 8(2), 237–252 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin-Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cushman, J.H.: The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, vol. 10. Springer, Berlin (2013)

    Google Scholar 

  34. D’Angelo, C., Zunino, P.: Robust numerical approximation of coupled Stokes’ and Darcy’s flows applied to vascular hemodynamics and biochemical transport. ESAIM Math. Model. Numer. Anal. 45(3), 447–476 (2011)

  35. Diegel, A.E., Feng, X., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004)

  37. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes–Darcy coupling. IMA J. Numer. Anal. 38(4), 1959–1983 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2–3), 93–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dostert, P., Efendiev, Y., Hou, T.Y.: Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Method Appl. M. 197(43–44), 3445–3455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Douglas, C.C., Hu, X., Bai, B., He, X.M., Wei, M., Hou, J.: A data assimilation enabled model for coupling dual porosity flow with free flow. In: 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Wuxi, China, October 19–23, 2018, pp. 304–307 (2018)

  43. Drzisga, D., Gmeiner, B., Rüde, U., Scheichl, R., Wohlmuth, B.: Scheduling massively parallel multigrid for multilevel Monte Carlo methods. SIAM J. Sci. Comput. 39(5), S873–S897 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes–Darcy system by optimization. J. Sci. Comput. 59(3), 775–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  47. Feng, W., He, X.M., Wang, Z., Zhang, X.: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with Beavers-Joseph interface condition. Appl. Math. Comput. 219(2), 453–463 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Ganis, B., Klie, H., Wheeler, M.F., Wildey, T., Yotov, I., Zhang, D.: Stochastic collocation and mixed finite elements for flow in porous media. Comput. Method Appl. M. 197(43–44), 3547–3559 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gao, Y., He, X.M., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn–Hilliard–Navier–Stokes–Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gatica, G.N., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ghanem, R., Dham, S.: Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transport Porous Med. 32(3), 239–262 (1998)

    Article  MathSciNet  Google Scholar 

  53. Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Monte Carlo and Quasi-Monte Carlo Methods, 2006, pp. 343–358. Springer, Berlin (2008)

  54. Giles, M.B.: Multilevel Monte Carlo path simulation. RAIRO-Oper. Res. 56, 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24(1), 259–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  57. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math. 127(1), 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Graham, I.G., Huo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230(10), 3668–3694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gunzburger, M., He, X.M., Li, B.: On Ritz projection and multi-step backward differentiation schemes in decoupling the Stokes–Darcy model. SIAM J. Numer. Anal. 56(1), 397–427 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Guo, C., Wang, J., Wei, M., He, X.M., Bai, B.: Multi-stage fractured horizontal well numerical simulation and its application in tight shale reservoirs. SPE-176714, SPE Russian Petroleum Technology Conference, Moscow, Russia, October 26–28 (2015)

  62. Han, D., He, X.M., Wang, Q., Wu, Y.: Existence and weak-strong uniqueness of solutions to the Cahn–Hilliard–Navier–Stokes–Darcy system in superposed free flow and porous media. Nonlinear Anal. 211, #112,411 (2021)

  63. Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Methods Appl. Sci. 37(18), 3048–3063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Hanspal, N., Waghode, A., Nassehi, V., Wakeman, R.: Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations. Transport Porous Med. 64, 73–101 (2006)

    Article  MATH  Google Scholar 

  65. He, X.M., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes–Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods Eng. 121(4), 712–739 (2020)

    Article  MathSciNet  Google Scholar 

  66. He, X.M., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier–Stokes–Darcy model with Beavers–Joseph interface condition. SIAM J. Sci. Comput. 37(5), S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Hoppe, R., Porta, P., Vassilevski, Y.: Computational issues related to iterative coupling of subsurface and channel flows. Calcolo 44(1), 1–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Hou, J., Qiu, M., He, X.M., Guo, C., Wei, M., Bai, B.: A dual-porosity-Stokes model and finite element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38(5), B710–B739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Igreja, I., Loula, A.F.D.: A stabilized hybrid mixed DGFEM naturally coupling Stokes–Darcy flows. Comput. Methods Appl. Mech. Eng. 339, 739–768 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  70. Jiang, N., Qiu, C.: An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Comput. Methods Appl. Mech. Eng. 343, 249–275 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kanschat, G., Riviére, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Karper, T., Mardal, K.A., Winther, R.: Unified finite element discretizations of coupled Darcy–Stokes flow. Numer. Methods Part. D. E. 25(2), 311–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  73. Kornhuber, R., Schwab, C., Wolf, M.W.: Multilevel Monte Carlo finite element methods for stochastic elliptic variational inequalities. SIAM J. Numer. Anal. 52(3), 1243–1268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kubacki, M., Moraiti, M.: Analysis of a second-order, unconditionally stable, partitioned method for the evolutionary Stokes–Darcy model. Int. J. Numer. Anal. Model. 12(4), 704–730 (2015)

    MathSciNet  Google Scholar 

  75. Kumar, P., Oosterlee, C.W., Dwight, R.P.: A multigrid multilevel Monte Carlo method using high-order finite-volume scheme for lognormal diffusion problems. Int. J. Uucertain. Quan. 7(1), 57–81 (2017)

    MathSciNet  Google Scholar 

  76. Kumara, P., Luo, P., Gaspara, F.J., Oosterleea, C.W.: A multigrid multilevel Monte Carlo method for transport in the Darcy–Stokes system. J. Comput. Phys. 371, 382–408 (2018)

    Article  MathSciNet  Google Scholar 

  77. Kuo, F.Y., Schwab, C., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15(2), 411–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  78. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. Li, H., Zhang, D.: Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods. Water Resour. Res. 43(9) (2007)

  81. Li, R., Li, J., He, X.M., Chen, Z.: A stabilized finite volume element method for a coupled Stokes–Darcy problem. Appl. Numer. Math. 133, 2–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  82. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids. Numer. Math. 126(2), 321–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  83. Liu, Y., He, Y., Li, X., He, X.M.: A novel convergence analysis of Robin-Robin domain decomposition method for Stokes–Darcy system with Beavers–Joseph interface condition. Appl. Math. Lett. 119, #107,181 (2021)

  84. Mahbub, M.A.A., He, X.M., Nasu, N.J., Qiu, C., Wang, Y., Zheng, H.: A coupled multi-physics model and a decoupled stabilized finite element method for closed-loop geothermal system. SIAM J. Sci. Comput. 42(4), B951–B982 (2020)

    Article  MATH  Google Scholar 

  85. Mahbub, M.A.A., He, X.M., Nasu, N.J., Qiu, C., Zheng, H.: Coupled and decoupled stabilized mixed finite element methods for non-stationary dual-porosity-Stokes fluid flow model. Int. J. Numer. Methods Eng. 120(6), 803–833 (2019)

    Article  Google Scholar 

  86. Márquez, A., Meddahi, S., Sayas, F.J.: Strong coupling of finite element methods for the Stokes–Darcy problem. IMA J. Numer. Anal. 35(2), 969–988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  87. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  88. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79(270), 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  89. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes–Darcy flow. SIAM J. Numer. Anal. 49(1), 387–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  90. Muzhinji, K., Shateyi, S., Motsa, S.S.: The mixed finite element multigrid method for Stokes equations. Sci. World J. 1–12 (2015)

  91. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  92. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  93. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  94. Nouri, K., Ranjbar, H., López, J.C.C.: Modifying the split-step \(\theta \)-method with harmonic-mean term for stochastic differential equations. Int. J. Numer. Anal. Mod. 17, 662–678 (2020)

    MathSciNet  MATH  Google Scholar 

  95. Qiu, C., He, X.M., Li, J., Lin, Y.: A domain decomposition method for the time-dependent Navier–Stokes–Darcy model with Beavers–Joseph interface condition and defective boundary condition. J. Comput. Phys. 411, #109,400 (2020)

  96. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  97. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  98. Robbe, P., Nuyens, D., Vandewalle, S.: Recycling samples in the multigrid multilevel (quasi-)Monte Carlo method. SIAM J. Sci. Comput. 41(5), S37–S60 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  99. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  100. Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods Appl. Mech. Engrg. 315, 169–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  101. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198(33–36), 2692–2699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  102. Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272(272), 327–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  103. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51(2), 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  104. Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications, Computational Science and Engineering, vol. 12. SIAM, Philadelphia (2013)

    Google Scholar 

  105. Stoter, S.K.F., Müller, P., Cicalese, L., Tuveri, M., Schillinger, D., Hughes, T.J.R.: A diffuse interface method for the Navier–Stokes/Darcy equations: perfusion profile for a patient-specific human liver based on MRI scans. Comput. Methods Appl. Mech. Eng. 321, 70–102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  106. Strang, G.: Computational Science and Engineering, vol. 791. Wellesley-Cambridge Press, Wellesley (2007)

    MATH  Google Scholar 

  107. Teckentrup, A.L., Scheichl, R., Giles, M.B., Ullmann, E.: Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125(3), 569–600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  108. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. With contributions by A. Brandt, P. Oswald and K. Stüben. Academic Press, Inc., San Diego, CA (2001)

  109. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  110. Vassilev, D., Yotov, I.: Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31(5), 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  111. Wang, D., Cao, Y., Li, Q., Shen, J.: A stochastic gradient descent method for the design of optimal random interface in thin-film solar cells. Int. J. Numer. Anal. Mod. 18, 384–398 (2021)

    MathSciNet  MATH  Google Scholar 

  112. Wang, G., Wang, F., Chen, L., He, Y.: A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes. Comput. Methods Appl. Mech. Eng. 344, 998–1020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  113. Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive Gauss–Seidel relaxations based on the least squares commutator. J. Sci. Comput. 56(2), 409–431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  114. Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys. 257, part A, 126–142 (2014)

  115. Wei, X., Zhao, J., He, X.M., Hu, Z., Du, X., Han, D.: Adaptive Kriging method for uncertainty quantification of the photoelectron sheath and dust levitation on the lunar surface. J. Verif. Valid. Uncert. 6(1), #011,006 (2021)

  116. Wu, K., Tang, H., Xiu, D.: A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty. J. Comput. Phys. 345, 224–244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  117. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191(43), 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  118. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  119. Zhang, D., Guo, L., Karniadakis, G.E.: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J. Sci. Comput. 42(2), A639–A665 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  120. Zhang, D., Lu, Z.: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Lo\(\grave{\text{ e }}\)ve and polynomial expansions. Numer. Math-Theory Methods 194(2), 773–794 (2004)

    Google Scholar 

  121. Zhang, J., Rui, H., Cao, Y.: A partitioned method with different time steps for coupled Stokes and Darcy flows with transport. Int. J. Numer. Anal. Mod. 16, 463–498 (2019)

    MathSciNet  MATH  Google Scholar 

  122. Zhang, Y., Zhou, C., Qu, C., Wei, M., He, X.M., Bai, B.: Fabrication and verification of a glass-silicon-glass micro-nanofluidic model for investigating multi-phase flow in unconventional dual-porosity porous media. Lab Chip 19, 4071–4082 (2019)

    Article  Google Scholar 

  123. Zhang, Z., Rozovskii, B., Karniadakis, G.E.: Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise. Numer. Math. 134(1), 61–89 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  124. Zhao, B., Zhang, M., Liang, C.: Global well-posedness for Navier–Stokes–Darcy equations with the free interface. Int. J. Numer. Anal. Mod. 18, 569–619 (2021)

    MathSciNet  Google Scholar 

  125. Zhao, J., Wei, X., Hu, Z., He, X.M., Han, D.: Photoelectron sheath near the lunar surface: fully kinetic modeling and uncertainty quantification analysis, #AIAA 2020-1548. In: Proceeding of AIAA Scitech 2020 Forum, Orlando, Florida, January 6–10 (2020)

Download references

Funding

This work is partially supported by NSF grants DMS-1418624 and DMS-1722647, NSFC grants 91330104 and 11871139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Ming.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code Availability

Custom code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NSF Grants DMS-1418624 and DMS-1722647, NSFC Grants 91330104 and 11871139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Ming, J., Qiu, C. et al. A Multigrid Multilevel Monte Carlo Method for Stokes–Darcy Model with Random Hydraulic Conductivity and Beavers–Joseph Condition. J Sci Comput 90, 68 (2022). https://doi.org/10.1007/s10915-021-01742-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01742-2

Keywords

Mathematics Subject Classification

Navigation