Skip to main content
Log in

Approximation of the Stokes–Darcy System by Optimization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A solution algorithm for the linear/nonlinear Stokes–Darcy coupled problem is proposed and investigated. The coupled system is formulated as a constrained optimal control problem, where a flow balance is forced across the interface, inflow, and outflow boundaries by minimizing a suitably defined functional. Optimization is achieved by exploiting a Neumann type boundary condition imposed on each subproblem as a control. A numerical algorithm is presented for a least squares functional whose solution yields a minimizer of the constrained optimization problem. Numerical experiments are provided to validate accuracy and efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arbogast, T., Gomez, M.: A discretization and multigrid solver for a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 13(3), 331–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardi, C., Rebollo, T.C., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42(3), 375–410 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cesmelioglu, A., Riviére, B.: Primal discontinuous Galerkin methods for time dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chow, S.-S., Carey, G.F.: Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates. Int. J. Numer. Methods Fluids 41, 1085–1118 (2003)

    Google Scholar 

  8. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2001)

    Article  MathSciNet  Google Scholar 

  9. Discacciati, M., Quarteroni, A., Vali, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling non-linear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Galvis, J., Sarkis, M.: FETI and BDD preconditioners for Stokes–Mortar–Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Golub, G., van Loan, C.: Matrix Computations. Johns Hopkins University, Baltimore (1989)

  15. Groetsch, C.W.: Generalized Inverses of Linear Operators. Marcel Dekker, New York (1977)

  16. Gunzburger, M.D., Peterson, J.S., Kwon, H.: An optimization based domain decomposition method for partial differential equations. Comput. Math. Appl. 37, 77–93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gunzburger, M.D., Lee, H.: An optimization-based domain decomposition method for the Navier–Stokes equations. SIAM J. Numer. Anal. 37, 1455–1480 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hanspal, N.S., Waghode, A.N., Nassehi, V., Wakeman, R.J.: Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Media 64, 1573–1634 (2006)

    Google Scholar 

  19. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jager, W., Mikeli\(\acute{c}\), A.: On the interface boundary condition of Beaver, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

  21. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lee, H.: An optimization-based domain decomposition method for the Boussinesq equations. Numer. Methods Partial Differ. Equ. 18, 1–25 (2002)

    Article  MATH  Google Scholar 

  23. Lee, H.: Optimal control for quasi-Newtonian flows with defective boundary conditions. Comput. Methods Appl. Mech. Eng. 200, 2498–2506 (2011)

    Article  MATH  Google Scholar 

  24. Riviére, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(23), 479–500 (2005)

    Article  MathSciNet  Google Scholar 

  25. Riviére, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyesuk Lee.

Additional information

Partially supported by the NSF under grant no. DMS-1016182.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ervin, V.J., Jenkins, E.W. & Lee, H. Approximation of the Stokes–Darcy System by Optimization. J Sci Comput 59, 775–794 (2014). https://doi.org/10.1007/s10915-013-9779-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9779-8

Keywords

Mathematics Subject Classification

Navigation