Skip to main content
Log in

A Three-Dimensional Continuum Simulation Method for Grain Boundary Motion Incorporating Dislocation Structure

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a continuum model for the dynamics of grain boundaries in three dimensions that incorporates the motion and reaction of the constituent dislocations. The continuum model is based on a simple representation of densities of curved dislocations on the grain boundary. Illposedness due to nonconvexity of the total energy is fixed by a numerical treatment based on a projection method that maintains the connectivity of the constituent dislocations. An efficient simulation method is developed, in which the critical but computationally expensive long-range interaction of dislocations is replaced by another projection formulation that maintains the constraint of equilibrium of the dislocation structure described by the Frank’s formula. This continuum model is able to describe the grain boundary motion and grain rotation due to both coupling and sliding effects, to which the classical motion by mean curvature model does not apply. Comparisons with atomistic simulation results show that our continuum model is able to give excellent predictions of evolutions of low angle grain boundaries and their dislocation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The datasets generated in study are available upon reasonable request.

Notes

  1. In fact, the net dislocation flux across the boundary of any region \(\Omega \) on the grain boundary is \(\int _{\partial \Omega }\nabla _S \eta _j\cdot d{\mathbf {r}}=\int _\Omega \left( \frac{\partial \eta _{jv}}{\partial u}-\frac{\partial \eta _{ju}}{\partial v}\right) dudv=0\) using this condition.

References

  1. Admal, N.C., Po, G., Marian, J.: A unified framework for polycrystal plasticity with grain boundary evolution. Int. J. Plast. 106, 1–30 (2018)

    Article  Google Scholar 

  2. Ask, A., Forest, S., Appolaire, B., Ammar, K., Salman, O.U.: A cosserat crystal plasticity and phase field theory for grain boundary migration. J. Mech. Phys. Solids 115, 167–194 (2018)

    Article  MathSciNet  Google Scholar 

  3. Basak, A., Gupta, A.: A two-dimensional study of coupled grain boundary motion using the level set method. Modell. Simul. Mater. Sci. Eng. 22, 055022 (2014)

    Article  Google Scholar 

  4. Bilby, B.A.: Bristol conference report on defects in crystalline materials. Phys. Soc., London p. 123 (1955)

  5. Cahn, J.W., Mishin, Y., Suzuki, A.: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953–4975 (2006)

    Article  Google Scholar 

  6. Cahn, J.W., Taylor, J.E.: A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52, 4887–4898 (2004)

    Article  Google Scholar 

  7. Chen, L.Q., Yang, W.: Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. Phys. Rev. B 50, 15752–15756 (1994)

    Article  Google Scholar 

  8. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chorin, A.J., Marsden, J.E., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, vol. 168. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  10. Coddingtong, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    Google Scholar 

  11. Dai, S., Li, B., Lu, J.: Convergence of phase-field free energy and boundary force for molecular solvation. Arch. Ration. Mech. Anal. 227, 105–147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Q., Feng, X.B.: The phase field method for geometric moving interfaces and their numerical approximations. Handb. Numer. Anal. 21, 425–508 (2020)

    MATH  Google Scholar 

  13. Elsey, M., Esedoglu, S., Smereka, P.: Diffusion generated motion for grain growth in two and three dimensions. J. Comput. Phys. 228, 8015–8033 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Epshteyn, Y., Liu, C., Mizuno, M.: Motion of grain boundaries with dynamic lattice misorientations and with triple junctions drag. SIAM J. Math. Anal. 53, 3072–3097 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esedoglu, S.: Grain size distribution under simultaneous grain boundary migration and grain rotation in two dimensions. Comput. Mater. Sci. 121, 209–216 (2016)

    Article  Google Scholar 

  16. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frank, F.C.: The Resultant Content of Dislocations in an Arbitrary Intercrystalline Boundary, pp. 150–154. Office of Naval Research, Pittsburgh (1950)

    Google Scholar 

  18. Gorkaya, T., Molodov, D.A., Gottstein, G.: Stress-driven migration of symmetrical \(<100>\) tilt grain boundaries in al bicrystals. Acta Mater. 57, 5396–5405 (2009)

    Article  Google Scholar 

  19. Harris, K., Singh, V., King, A.: Grain rotation in thin films of gold. Acta Mater. 46, 2623–2633 (1998)

    Article  Google Scholar 

  20. Herring, C.: Surface tension as a motivation for sintering. In: Kingston, W.E. (ed.) The Physics of Powder Metallurgy, pp. 143–179. McGraw-Hill, New York (1951)

    Google Scholar 

  21. Kazaryan, A., Wang, Y., Dregia, S.A., Patton, B.R.: Generalized phase-field model for computer simulation of grain growth in anisotropic systems. Phys. Rev. B 61, 14275–14278 (2000)

    Article  Google Scholar 

  22. Kinderlehrer, D., Liu, C.: Evolution of grain boundaries. Math. Models Methods Appl. Sci. 4, 713–729 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirch, D.M., Jannot, E., Barrales-Mora, L.A., Molodov, D.A., Gottstein, G.: Inclination dependence of grain boundary energy and its impact on the faceting and kinetics of tilt grain boundaries in aluminum. Acta Mater. 56, 4998–5011 (2006)

    Article  Google Scholar 

  24. Kobayashi, R., Warren, J.A., Carter, W.C.: A continuum model of grain boundaries. Phys. D 140, 141–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krill, C., III., Chen, L.Q.: Computer simulation of 3-d grain growth using a phase-field model. Acta Mater. 50, 3059–3075 (2002)

    Article  Google Scholar 

  26. Lazar, E.A., MacPherson, R.D., Srolovitz, D.J.: A more accurate two-dimensional grain growth algorithm. Acta Mater. 58, 364–372 (2010)

    Article  Google Scholar 

  27. Le, T., Du, Q.: A generalization of the three-dimensional Macpherson–Srolovitz formula. Commun. Math. Sci. 7, 511–520 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C.H., Edwards, E.H., Washburn, J., Parker, E.R.: Stress-induced movement of crystal boundaries. Acta Metall. 1, 223–229 (1953)

    Article  Google Scholar 

  29. Li, J.C.: Possibility of subgrain rotation during recrystallization. J. Appl. Phys. 33, 2958–2965 (1962)

    Article  Google Scholar 

  30. MacPherson, R., Srolovitz, D.: The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446, 1053–105 (2007)

    Article  Google Scholar 

  31. McReynolds, K., Wu, K.A., Voorhees, P.: Grain growth and grain translation in crystals. Acta Mater. 120, 264–272 (2016)

    Article  Google Scholar 

  32. Molodov, D.A., Ivanov, V.A., Gottstein, G.: Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 55, 1843–1848 (2007)

    Article  Google Scholar 

  33. Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900–904 (1956)

    Article  MathSciNet  Google Scholar 

  34. Qin, X.X., Gu, Y.J., Zhang, L.C., Xiang, Y.: Continuum model and numerical method for dislocation structure and energy of grain boundaries. arXiv:2101.02596 (2021)

  35. Rath, B.B., Winning, M., Li, J.C.M.: Coupling between grain growth and grain rotation. Appl. Phys. Lett. 90, 161915 (2007)

    Article  Google Scholar 

  36. Salvalaglio, M., Backofen, R., Elder, K., Voigt, A.: Defects at grain boundaries: a coarse-grained, three-dimensional description by the amplitude expansion of the phase-field crystal model. Phys. Rev. Mater. 2, 053804 (2018)

    Article  Google Scholar 

  37. Shewmon, P.G.: In: Margolin, H. (ed.) Recrystallization, Grain Growth and Textures, pp. 165–199. American Society of Metals, Metals Park (1966)

  38. Srinivasan, S.G., Cahn, J.W.: Challenging some free-energy reduction criteria for grain growth. In: Ankem, S., Pande, C.S., Ovid’ko, I., Ranganathan, S. (eds.) Science and Technology of Interfaces, pp. 3–14. TMS, Seattle (2002)

    Google Scholar 

  39. Sutton, A., Balluffi, R.: Interfaces in Crystalline Materials. Clarendon Press, Oxford (1995)

    Google Scholar 

  40. Taylor, J.E., Cahn, J.W.: Shape accommodation of a rotating embedded crystal via a new variational formulation. Interfaces Free Bound. 9, 493–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Trautt, Z., Mishin, Y.: Grain boundary migration and grain rotation studied by molecular dynamics. Acta Mater. 60, 2407–2424 (2012)

    Article  Google Scholar 

  42. Upmanyu, M., Hassold, G.N., Kazaryan, A., Holm, E.A., Wang, Y., Patton, B., Srolovitz, D.J.: Boundary mobility and energy anisotropy effects on microstructural evolution during grain growth. Interface Sci. 10, 201–216 (2002)

    Article  Google Scholar 

  43. Upmanyu, M., Srolovitz, D.J., Lobkovsky, A.E., Warren, J.A., Carter, W.C.: Simultaneous grain boundary migration and grain rotation. Acta Mater. 54, 1707–1719 (2006)

    Article  Google Scholar 

  44. Wu, K.W., Voorhees, P.W.: Phase field crystal simulations of nanocrystalline grain growth in two dimensions. Acta Mater. 60, 407–419 (2012)

    Article  Google Scholar 

  45. Yamanaka, A., McReynolds, K., Voorhees, P.W.: Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a bcc bicrystal. Acta Mater. 133, 160–171 (2017)

    Article  Google Scholar 

  46. Zhang, H., Upmanyu, M., Srolovitz, D.J.: Curvature driven grain boundary migration in aluminum: molecular dynamics simulations. Acta Mater. 53, 79–86 (2005)

    Article  Google Scholar 

  47. Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31, 3042–3063 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, L., Xiang, Y.: A new formulation of coupling and sliding motions of grian boundaries based on dislocation structure. SIAM J. Appl. Math. 80, 2365–2387 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, L.C., Gu, Y.J., Xiang, Y.: Energy of low angle grain boundaries based on continuum dislocation structure. Acta Mater. 126, 11–24 (2017)

    Article  Google Scholar 

  50. Zhang, L.C., Xiang, Y.: Motion of grain boundaries incorporating dislocation structure. J. Mech. Phys. Solids 117, 157–178 (2018)

    Article  MathSciNet  Google Scholar 

  51. Zhu, X.H., Xiang, Y.: A continuum model for the dynamics of dislocation arrays. Commun. Math. Sci. 10, 1081–1103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu, X.H., Xiang, Y.: Continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries. J. Mech. Phys. Solids 69, 175–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council General Research Fund 16301720 and 16302818.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luchan Zhang or Yang Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Derivation of the Formula for Misorientation Angle \(\theta \) in (30)

A Derivation of the Formula for Misorientation Angle \(\theta \) in (30)

Substituting \({\mathbf {V}}_1= {\mathbf {r}}_u\) and \({\mathbf {V}}_2= \mathbf{r}_v\) into Frank’s formula in Eq. (27), we have

$$\begin{aligned} \theta ({\mathbf {r}}_u\times {\mathbf {a}})-\sum _{j=1}^{J}{\mathbf {b}}^{(j)}\eta _{ju}=&0, \end{aligned}$$
(64)
$$\begin{aligned} \theta (\mathbf {r}_v\times {\mathbf {a}})-\sum _{j=1}^{J}{\mathbf {b}}^{(j)}\eta _{jv}=&0. \end{aligned}$$
(65)

Here we have used \(\nabla _S \eta _j\varvec{\cdot }{\mathbf {r}}_u=\eta _{ju}\) and \(\nabla _S \eta _j\varvec{\cdot }{\mathbf {r}}_v=\eta _{jv}\). Adding the two equations (64) and (65), multiplying both size of the summation by \(( {\mathbf {r}}_u+ {\mathbf {r}}_v) \times {\mathbf {a}} \), we have

$$\begin{aligned} \theta \Vert ( {\mathbf {r}}_u+ {\mathbf {r}}_v) \times {\mathbf {a}}\Vert ^2= \sum _{j=1}^J ( \eta _{ju}+ \eta _{jv})( {\mathbf {r}}_u + {\mathbf {r}}_v )\times {\mathbf {a}}{\cdot }{\mathbf {b}}^{(j)}. \end{aligned}$$
(66)

Integrating over the entire grain boundary S, we obtain the formula of \(\theta \) in Eq. (30).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Zhang, L. & Xiang, Y. A Three-Dimensional Continuum Simulation Method for Grain Boundary Motion Incorporating Dislocation Structure. J Sci Comput 90, 3 (2022). https://doi.org/10.1007/s10915-021-01694-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01694-7

Keywords

Navigation