Skip to main content

Multiscale Dislocation-Based Plasticity

  • Chapter
  • First Online:
Mesoscale Models

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 587))

Abstract

This chapter, outlines a multiscale dislocation-based plasticity framework coupling discrete dislocation dynamics (DDD) with continuum dislocation-based plasticity. In this framework, and guided by DDD, a continuum dislocation dynamics (CDD) plasticity model involving a set of spatio-temporal evolution equations for dislocation densities representing mobile and immobile species is developed. The evolution laws consist of a set of components each corresponding to a physical mechanism that can be explicitly evaluated and quantified from DDD analyses. In this framework, stochastic events such as cross-slip of screw dislocations and uncertainties associated with initial microstructural conditions are explicitly incorporated in the continuum theory based on probability distribution functions defined by activation energy and activation volumes. The result is a multiscale dislocation-based plasticity model which can predict not only the macroscopic material mechanical behavior but also the corresponding microscale deformation and the evolution of dislocation patterns, size and gradient-dependent deformation phenomena, and related material instabilities at various length and time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (i) Dislocation multiplication, term \( {\beta}_1={\alpha}_1\ {\overline{v}}_g^{\alpha }/\overline{\ell}. \)Let the rate of multiplication be \( {\left.{\dot{\rho}}_m^{+\alpha}\right|}_{(1)}=\kern0.5em {\alpha}_1{\rho}_m^{+\alpha }/\overline{t} \), and \( \overline{t} \) be some characteristic time for dislocation segment of characteristic length \( \overline{\ell} \) and having an average velocity of \( {\overline{v}}_g^{\alpha } \). Then \( \overline{t}=\overline{\ell}/{\overline{v}}_g^{\alpha } \), which can be substituted into the expression for \( {\left.{\dot{\rho}}_m^{+\alpha}\right|}_{(1)} \), yielding β 1.

    (ii) Mutual annihilation of mobile dislocations, term \( {\beta}_2=2{\alpha}_2{R}_c{\overline{v}}_g^{\alpha } \). Let \( f=1/\overline{t} \) be the frequency of which a mobile dislocation located in a circular region of radius R c (capture radius for annihilation) gets annihilated by a mobile dislocation of opposite sign sweeping through the circular region with an average velocity \( {\overline{v}}_g^{\alpha } \). Then \( \overline{t}=\overline{x} \) / \( {\overline{v}}_g^{\alpha } \) , where \( \overline{x} \) is the average distance traveled by dislocations sweeping through the circular region. Then let the rate of annihilation be \( {\left.{\dot{\rho}}_m^{+\alpha}\right|}_{(2)}={\alpha}_1{N}_m^{+\alpha }\ {N}_m^{-\alpha }/{A}_c\ \overline{t} \), where \( {A}_c=\pi {R}_c^2 \) and \( {N}_m^{+\alpha }={\rho}_m^{+\alpha }{A}_c \), is the number of mobile dislocations with opposite sign of burgers vector residing in A c , and \( {N}_m^{-\alpha }={\rho}_m^{-\alpha }{A}_c \) is the number of disloctions of opposite sign entering the area A c with velocity \( {\overline{v}}_g^{\alpha } \). Suppose a mobile dislocation is gliding on a slip plane intersecting the circular area A c and located at distance y < R c from the center of the circle, then the distance the dislocation travels through the area is equal to \( 2\sqrt{R_c^2-{y}^2} \). Then for all possible slip planes interesting the area A, the average distance swept through the circle by dislocations entering and exiting the circle is \( \overline{x}=\left(1/{R}_c\right){\int}_0^{R_c}2\sqrt{R_c^2-{y}^2} dy=\pi {R}_c/2 \), substituting this result in the expression for the rate of annihilation \( {\left.{\dot{\rho}}_m^{+\alpha}\right|}_{(2)} \) leads to β 2. β 3 is derived using the same arguments.

    (iii) Pinning of mobile dislocations by immobile, term \( {\beta}_3={\alpha}_3\pi {R}_c^3{\overline{v}}_g^{\alpha } \). In this case it is argued that an immobile dislocation resided within the capture area of radius R c may trap equally mobile dislocations of opposite signs entering the capture area. For each mobile dislocation entering the area, say form right to left, there is a dislocation of opposite sign entering the area from left to right. Furthermore, it is assumed that since immobile dislocation (e.g. dipole or junction) is formed from two dislocations (e.g. dipole or junction), and thus the term includes \( {\left({\rho}_i^{\alpha}\right)}^2 \). The derivation follows the same steps described above for term 2.

Bibliography

  • E.C. Aifantis, On the dynamical origin of dislocation patterns. Mater. Sci. Eng. 81, 563–574 (1986)

    Article  Google Scholar 

  • E.C. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987)

    Article  MATH  Google Scholar 

  • E. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95(1–4), 299–314 (1999)

    Article  Google Scholar 

  • A. Akarapu, H.M. Zbib, D.F. Bahr, Analysis of heterogeneous defromation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plast. 26, 239–257 (2010)

    Article  MATH  Google Scholar 

  • F. Akasheh, H.M. Zbib, S. Akarapu, S. Overman, D. Bahr, Multiscale modeling of dislocation mechanisms in nanoscale multilayered composites. Mater. Res. Soc. Symp. 1130, W13-01 (2009)

    Google Scholar 

  • A. Alankar, I. Mastorakos, D. Field, H.M. Zbib, Determination of dislocation interaction strengths using discrete dislocation dynamics of curved dislocations. J. Eng. Mater. Tech 134, 4 (2013)

    Google Scholar 

  • G. Ananthaktishna, Current theoretical approaches to collective behavior of dislocations. Phys. Rep. 440, 113–259 (2007)

    Article  MathSciNet  Google Scholar 

  • A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrcially necessary and statistically-stored dislocation density. Acta Metall. 47, 1597–1611 (1999)

    Google Scholar 

  • A. Arsenlis, B.D. Wirth, M. Rhee, Disloction density-based constitutive model for the mechanical bahaviour of irradiated Cu. Philos. Mag. 84(34), 3517–3635 (2004)

    Article  Google Scholar 

  • H. Askari, M.R. Maughan, N.S. Abdolrahim, D.F. Bahri, H.M. Zbib, A stochastic crystal plasticity framework for deformation in micro-scale polycrystalline materials. Int. J. Plast. 68, 21–33 (2015)

    Article  Google Scholar 

  • A. Bag, K. Ray, E. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall. Mater. Trans. A 30(5), 1193–1202 (1999)

    Article  Google Scholar 

  • T. Balusamy, T.S. Narayanan, K. Ravichandran, I.S. Park, M.H. Lee, Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel. Corros. Sci. 74, 332–344 (2013)

    Article  Google Scholar 

  • D.J. Bammann, An internal variable model of viscoplasticity. Int. J. Eng. Sci. 22(8–10), 1041–1053 (1984)

    Article  MATH  Google Scholar 

  • D.J. Bammann, P.R. Dawson, Effects of spatial gradients in hardening evolution upon localization. Physics and mechanics of finite plastic and viscoplastic deformation (1997)

    Google Scholar 

  • E. Bayerschen, A. McBride, B. Reddy, T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51(5), 2243–2258 (2016)

    Article  Google Scholar 

  • T.M. Breunig, S.R. Stock, S.D. Antolovich, J.H. Kinney, W.N. Massey, M.C. Nichols, A framework for relating macroscopic measures and physical processes of crack closure illustrated by a study of aluminum lithium alloy 2090, ASTM STP 1131. Fracture Mech. 22nd Sym, ASTM, Phil (1992)

    Google Scholar 

  • M. Calcagnotto, D. Ponge, D. Raabe, Effect of grain refinement to 1μm on strength and toughness of dual-phase steels. Mater. Sci. Eng. A 527(29), 7832–7840 (2010)

    Article  Google Scholar 

  • M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 59(2), 658–670 (2011)

    Article  Google Scholar 

  • S.S. Chakravarthy, W. Curtin, Stress-gradient plasticity. Proc. Natl. Acad. Sci. 108(38), 15716–15720 (2011)

    Article  Google Scholar 

  • J. Eshelby, F. Frank, F. Nabarro, XLI. The equilibrium of linear arrays of dislocations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(327), 351–364 (1951)

    Article  MATH  Google Scholar 

  • N. Fleck, J. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Fleck, J. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 296–361 (1997)

    MATH  Google Scholar 

  • N. Fleck, G. Muller, M. Ashby, J. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia 42(2), 475–487 (1994)

    Article  Google Scholar 

  • S. Forest, K. Sab, Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012)

    Article  Google Scholar 

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  • H. Gao, Y. Huang, Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48(2), 113–118 (2003)

    Article  Google Scholar 

  • S. Groh, E.B. Marin, M.F. Horstemeyer, H.M. Zbib, Multiscale modeling of plasticity in an aluminum single crystal. Int. J. Plast. 25, 1456–1473 (2009)

    Article  MATH  Google Scholar 

  • I. Groma, P. Balogh, Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Mater. 47, 3647–3654 (1999)

    Article  Google Scholar 

  • M.E. Gurtin, L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: Finite deformations. Int. J. Plast. 21(12), 2297–2318 (2005)

    Article  MATH  Google Scholar 

  • Y. Hailiang, L. Cheng, T. Kiet, L. Xianghua, S. Yong, Y. Qingbo, K. Charlie, Asymmetric cryorolling for fabrication of nanostructural aluminum sheets. Sci. Rep. 2, 772 (2012)

    Article  Google Scholar 

  • E. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64(9), 747 (1951)

    Article  Google Scholar 

  • H. Hallber, M. Ristinmaa, Microstructure evolution influenced by dislocation density gradients modeled in a reaction-diffusion system. Comput. Mater. Sci. 67, 373–383 (2013)

    Article  Google Scholar 

  • M. Hiratani, H.M. Zbib, Stochastic dislocation dynamics for dislocation-defects interaction. J. Eng. Mater. Tech. 124, 335–341 (2002)

    Article  Google Scholar 

  • M. Hiratani, H.M. Zbib, On dislocation-defect interactions and patterning: stochastic discrete dislocation dynamics (SDD). J. Nucl. Mater. 323, 290–303 (2003)

    Article  Google Scholar 

  • J. Hirth, Dislocation pileups in the presence of stress gradients. Philos. Mag. 86(25–26), 3959–3963 (2006a)

    Article  Google Scholar 

  • J.P. Hirth, Disloction pileups in the presene of stress gradients. Philos. Mag. 86, 3959–3963 (2006b)

    Article  Google Scholar 

  • J.P. Hirth, M. Rhee, H.M. Zbib, Modeling of deformation by a 3D simulation of multipole, curved dislocations. J. Computer-Aided Mater. Des. 3, 164–166 (1996)

    Article  Google Scholar 

  • J.P. Hirth, H.M. Zbib, J. Lothe, Forces on high velocity dislocations. Model. Simul. Mater. Sci. Eng. 6, 165–169 (1998)

    Article  Google Scholar 

  • D. Holt, Dislocation cell formation in metals. J. Appl. Phys. 41, 3197–3201 (1970)

    Article  Google Scholar 

  • Y. Huang, H. Gao, W. Nix, J. Hutchinson, Mechanism-based strain gradient plasticity—II. Analysis. J. Mech. Phys. Solids 48(1), 99–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Huang, S. Qu, K. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4), 753–782 (2004)

    Article  MATH  Google Scholar 

  • J.Y. Kang, J.G. Kim, H.W. Park, H.S. Kim, Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torion. Sci. Rep. 6, 26590 (2016)

    Article  Google Scholar 

  • A. Khan, H.M. Zbib, D.A. Hughes, Stress patterns of deformation induced planar dislocation boundaries (MRS, San Francisco, 2001)

    Google Scholar 

  • A. Khan, H.M. Zbib, D.A. Hughes, Modeling planar dislocation boundaries using a multi-scale approach. Int. J. Plast. 20, 1059–1092 (2004)

    Article  MATH  Google Scholar 

  • U.F. Kocks, Laws for work-hardening and low-temperature creep. ASME Trans. Ser. H. J. Eng. Mater. Technol. 98, 76–85 (1976)

    Article  Google Scholar 

  • J. Kratochvil, Dislocation pattern formation in metals. Revue de physique appliquée 23(4), 419–429 (1988)

    Article  Google Scholar 

  • L.P. Kubin, Y. Estrin, Strain non-uniformities and plastic instabilities. Rev. Phys. Appl. 23, 573–583 (1988)

    Article  Google Scholar 

  • D.S. Li, H.M. Zbib, H.S. Garmestani, M. Khaleel, X. Sun, Modeling of irradiation hardening of polycrystalline materials. Comp. Mater. Cont. 50, 2496–2501 (2010)

    Article  Google Scholar 

  • D. Li, H.M. Zbib, X. Sun, M. Khaleel, Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics. Int. J. Plast. 52, 3–17 (2013). https://doi.org/10.1016/j.ijplas.2013.01.015

    Article  Google Scholar 

  • D. Li, H. Zbib, X. Sun, M. Khaleel, Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics. Int. J. Plast. 52, 3–17 (2014)

    Article  Google Scholar 

  • H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, R.H. Wagoner, Simulation of polycrystal defromation with grain and garin boundary effects. Int. J. Plast. 27, 1328–1354 (2011)

    Article  MATH  Google Scholar 

  • D. Liu, Y. He, B. Zhang, L. Shen, A continuum theory of stress gradient plasticity based on the dislocation pile-up model. Acta Mater. 80, 350–364 (2014)

    Article  Google Scholar 

  • K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375, 38–45 (2004)

    Article  Google Scholar 

  • L. Lu, M. Sui, K. Lu, Supperplastic extensibility of nanocrystalline copper at room termperature. Science 287(5457), 1463 (2000)

    Article  Google Scholar 

  • H. Lyu, A. Ruimi, H.M. Zbib, A dislocation-based model for deformation and size effect in multi-phase steels. Int. J. Plast. 72, 44–59 (2015a)

    Article  Google Scholar 

  • H. Lyu, A. Ruimi, H.M. Zbib, A dislocation-based model for deformation and size effect in multiscale-phase steels. Int. J. Plast. 72, 44–59 (2015b)

    Article  Google Scholar 

  • H. Lyu, A. Ruimi, F. Zhang, H.M. Zbib, A numerical investigation of the effect of texture on mechanical properties in dual phase steel using a dislocation-based crystal plasticity model. MS&T 2015 Proceedings: Multi scale Modeling of Microstructure Deformation in Material Processing (2015c)

    Google Scholar 

  • H. Lyu, A. Ruimi, P.D. Field, H.M. Zbib, Plasticity in materials with heterogeneous microstructures. Metall. Trans. A. 47(12), 6608–6620 (2016a)

    Article  Google Scholar 

  • H. Lyu, N. Taheri-Nassaj, H.M. Zbib, A multiscale gradient-dependent plasticity model for size effects. Philos. Mag. 96, 1–26 (2016b)

    Article  Google Scholar 

  • H. Lyu, N. Taheri-Nassaj, H.M. Zbib, A multiscale gradient-dependent plasticity mole for size effects. Philos. Mag. 96(18), 1883–1908 (2016c)

    Article  Google Scholar 

  • H. Lyu, M. Hamid, A. Ruimi, H.M. Zbib, Stress/Strain gradient plasticity model for size effects in materials with heterogeneous nano-microstructures. Int. J. Plast. 97, 46–63 (2017)

    Article  Google Scholar 

  • I. Mastorakos, H. Zbib, A multiscale approach to study the effect of chromium and nickel concentration in the hardening of iron alloys. J. Nucl. Mater. 449(1), 101–110 (2014)

    Article  Google Scholar 

  • I. Mastorakos, L. Le, M. Zeine, H.M. Zbib, M. Khaleel, Multiscale Modeling of irradiation induced hardening in a-Fe, Fe-Cr and Fe-Ni Systems, in Basic Actinide Science and Materials for Nuclear Applications, (MRS, Warrendale, 2010)

    Google Scholar 

  • D.L. McDowell, Internal state variable theory (Springer, Dordrecht, 2005)

    Book  Google Scholar 

  • D.L. McDowell, A perspective on trends in multiscale plasticity. Int. J. Plast. 26(9), 1280–1309 (2010)

    Article  MATH  Google Scholar 

  • S. Mesarovic, Energy, configurational forces and characteristic lengths associated with the continuum description of geometrically necessary dislocations. Int. J. Plast. 21, 1855–1889 (2005a)

    Article  MATH  Google Scholar 

  • S.D. Mesarovic, Energy, configurational forces and characteristic lengths associated with the continuum description of geometrically necessary dislocation. Int. J. Plast. 21, 1855–1889 (2005b)

    Article  MATH  Google Scholar 

  • Y. Morita, K. Shizawa, H.M. Zbib, Self-organization model and simulation of collective dislocation based on interaction between GN dislocation and dislocation dipole. Mater. Sci. Res. Int. 2, 323–326 (2001)

    Google Scholar 

  • D.G. Morris, The origins of strengthening in nanostructured metals and alloys (2010)

    Article  Google Scholar 

  • NRC, National Research Council Report. Integrated computational materials engineering. (The National Academies Press, Washington, DC, 2008), http://www.nap.edu/catalog/12199.html

  • NSF, Blue Ribbon Advisory Panel Report 2006 Simulation-based engineering science (2006), http://www.nsf.gov/pubs/reportssbes_final_report.pdf

  • NSTC, Materials Genome Initiative (MGI) for Global Competitiveness (2011), http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-fina;.pdf.

  • T. Ohashi, Numerical modeling of plastic multislip in metal crystals of fcc type. Philos. Mag. A 70(5), 793–803 (1994)

    Article  Google Scholar 

  • T. Ohashi, A new model of scale dependent crystal plasticity analysis. IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength (Springer, 2004)

    Google Scholar 

  • T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids. Int. J. Plast. 21(11), 2071–2088 (2005)

    Article  MATH  Google Scholar 

  • T. Ohashi, M. Kawamukai, H. Zbib, A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int. J. Plast. 23(5), 897–914 (2007)

    Article  MATH  Google Scholar 

  • E. Orowan, Problems of plastic gliding. Z. Physik 1934, 634 (1940)

    Google Scholar 

  • N. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    Google Scholar 

  • J. Pontes, D. Walgraef, E.C. Aifantis, On disloction patterning: multiple slip effects in the rate equations approach. Int. J. Plast. 22, 1486–1505 (2015)

    Article  MATH  Google Scholar 

  • J. Rajagopalan, M.T.A. Saif, Effect of microstructural heterogeneity on the mechanical behavior of nanocrystalline metal films. J. Mater. Res. 26(22), 2826–2832 (2011)

    Article  Google Scholar 

  • M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, T.D. de la Rubia, Models for long/short range interactions in 3D dislocatoin simulation. Model. Simul. Mater. Sci. Eng. 6, 467–492 (1998)

    Article  Google Scholar 

  • R. Roumina, C. Sinclair, Deformation geometry and through-thickness strain gradients in asymmetric rolling. Metall. Mater. Trans. A 39(10), 2495 (2008)

    Article  Google Scholar 

  • M. Sarwar, R. Priestner, Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J. Mater. Sci. 31(8), 2091–2095 (1996)

    Article  Google Scholar 

  • S. Shao, H.M. Zbib, I. Mastorakos, D.F. Bahr, Deformation mechanisms, size effects, and strain hardening in nanoscale multilayerd metallic composites under nanoindentation. J. Appl. Phys. 112, 044307 (2012)

    Article  Google Scholar 

  • S. Shao, N. Abdolrahim, D.F. Bahr, G. Lin, H.M. Zbib, Stochastic effects in plasticity in small volumes. Int. J. Plast. 82, 435–441 (2014)

    Google Scholar 

  • M. Shehadeh, H.M. Zbib, T.D. de la Rubia, Multiscale dislocation dynamics simulations of shock compressions in copper single crystal. Int. J. Plast. 21, 2369–2390 (2005)

    Article  MATH  Google Scholar 

  • M.A. Shehadeh, H.M. Zbib, T.D. de la Rubia, Modeling the dynamic deformation and patterning in FCC single crystals at high strain rates: dislocation dynamic plasticity analysis. Philos. Mag. A 85, 1667–1684 (2005)

    Article  Google Scholar 

  • K. Shizawa, H. Zbib, A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals. Int. J. Plast. 15(9), 899–938 (1999a)

    Article  MATH  Google Scholar 

  • K. Shizawa, H. Zbib, A thermodynamical theory of plastic spin and internal stress with dislocation density tensor. J. Eng. Mater. Technol. 121(2), 247–253 (1999b)

    Article  MATH  Google Scholar 

  • K. Shizawa, H.M. Zbib, A strain-gradient thermodynamic theory of plasticity based on dislocation density and incompatibility tensor. Mater. Sci. Eng. A 309, 416–419 (2001)

    Article  Google Scholar 

  • Y.I. Son, Y.K. Lee, K.-T. Park, C.S. Lee, D.H. Shin, Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater. 53(11), 3125–3134 (2005)

    Article  Google Scholar 

  • T.-N. Taheri, Dislocation-based multiscale modeling of plasticity and controlling deformation mechanisms. PhD, Washington State University, 2016

    Google Scholar 

  • N. Taheri-Nassaj, H.M. Zbib, On dislocation pileups and stress-gradient dependent plastic flow. Int. J. Plast. 74, 1–16 (2015)

    Article  Google Scholar 

  • N. Taheri-Nassaj, H.M. Zbib, A mesoscale model of plasticity: Disloction dynamics and patterning (1D). ASME J. Eng. Mater. Technol 138(4), 1–9 (2016)

    Article  Google Scholar 

  • N. Tao, H. Zhang, J. Lu, K. Lu, Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT). Mater. Trans. 44(10), 1919–1925 (2003)

    Article  Google Scholar 

  • G.Z. Voyadjis, L.M. Mohammad, Theory vs experiment for finite strain viscoplastic lagrangian constitutive model. Int. J. Plast. 7, 329–350 (1991)

    Article  MATH  Google Scholar 

  • D. Walgraef, E.C. Aifantis, On the formation and stability of dislocation patterns I, II, III. Int. J. Eng. Sci. 23, 1315–1372 (1985)

    MATH  Google Scholar 

  • X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater. 50(8), 2075–2084 (2002)

    Article  Google Scholar 

  • X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. 111(20), 7197–7201 (2014a)

    Article  Google Scholar 

  • X.L. Wu, P. Jiang, L. Chen, J.F. Zhnag, F.P. Youn, Y.T. Zhu, Synergetic strengthening by gradient structure. Mater. Res. Lett. 2(4), 185–191 (2014b)

    Article  Google Scholar 

  • X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. 112(47), 14501–14505 (2015)

    Article  Google Scholar 

  • S. Wulfinghoff, T. Böhlke, Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport. Int. J. Plast. 69, 152–169 (2015)

    Article  Google Scholar 

  • M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett., 1–7 (2016)

    Google Scholar 

  • Z. Yin, X. Yang, X. Ma, J. Moering, J. Yang, Y. Gong, Y. Zhu, X. Zhu, Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Mater. Des. 105, 89–95 (2016)

    Article  Google Scholar 

  • H. Zbib, Strain gradients and size effects in nonhomogeneous plastic deformation. Scripta metallurgica et materialia 30(9), 1223–1226 (1994)

    Article  Google Scholar 

  • H.M. Zbib, E.C. Aifantis, On the localization and post localization behavior of plastic deformation-II. On the evolution and thickness of shear bands. Res. Mech. Int. J. Struct. Mech. Mater. Sci. 23, 279–292 (1988)

    Google Scholar 

  • A.P.H. Zbib, E. Aifantis, On the gradient-dependent theory of plasticity and shear banding. Acta Mech. 92(1–4), 209–225 (1992)

    Article  MATH  Google Scholar 

  • H.M. Zbib, T. Diaz de la Rubia, A multiscale model of plasticity. Int. J. Plast. 18(9), 1133–1163 (2002)

    Article  MATH  Google Scholar 

  • H.M. Zbib, M. Shehadeh, On the homogenous nucleation and propagation of dislocations under shock compression. Philos. Mag. 96, 2752–2778 (2016)

    Article  Google Scholar 

  • H.M. Zbib, M. Rhee, J.P. Hirth, On plastic deformation and the dynamcis of 3D dislocations. Int. J. Mech. Sci. 40, 113–127 (1998)

    Article  MATH  Google Scholar 

  • H.M. Zbib, M. Rhee, J.P. Hirth, T. Diaz de la Rubia, A 3D dislocation simulation model for plastic deformation and instabilities in single crystals. J. Mech. Behav. Mater. 11, 251–255 (2000)

    Article  Google Scholar 

  • H.M. Zbib, C. Overman, F. Akasheh, D.F. Bahr, Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int. J. Plast. 27, 1618–1638 (2011)

    Article  MATH  Google Scholar 

  • P. Zhang, D. Balint, J. Lin, Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation. Philos. Mag. 91(36), 4555–4573 (2011)

    Article  Google Scholar 

  • P. Zhang, M. Karimpour, D. Balint, J. Lin, D. Farrugia, A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis. Comput. Mater. Sci. 64, 84–89 (2012)

    Article  Google Scholar 

  • F. Zhang, A. Ruimi, P.C. Wo, D.P. Field, Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior. Mater. Sci. Eng. A 659, 93–103 (2016)

    Article  Google Scholar 

  • Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18(17), 2280–2283 (2006)

    Article  Google Scholar 

  • H.T. Zhu, H. Zbib, E. Aifantis, Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech. 121(1–4), 165–176 (1997)

    Article  MATH  Google Scholar 

  • K. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater. 52(14), 4101–4110 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

The support provided by the National Science Foundation’s CMMI program to WSU under Grant No. 1434879 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein M. Zbib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zbib, H.M., Hamid, M., Lyu, H., Mastorakos, I. (2019). Multiscale Dislocation-Based Plasticity. In: Mesarovic, S., Forest, S., Zbib, H. (eds) Mesoscale Models. CISM International Centre for Mechanical Sciences, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-94186-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94186-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94185-1

  • Online ISBN: 978-3-319-94186-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics