Skip to main content
Log in

Image Completion and Blind Deconvolution: Model and Algorithm

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a model for recovering edges in an underlying image from a single blurred image whose entries are only partially known on randomly distributed indices. In the proposed model, blurred image, the underlying image and convolution kernel are all unknowns to be solved. Besides the classical convolution-type data fitting term for image deblurring, our model incorporates nuclear norm prior for blurred image, a total variation (TV) regularization prior for recovering edges, and Tikhonov regularization prior for the blur kernel. We develop a proximal alternating minimization (PAM) iterative method to solve the model and establish its convergence. Efficient implementations are proposed for solving the subproblems arising from PAM iterations. Numerical results are reported to show the performance of our proposed approach is better than the method using TV regularization prior on the blur kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

The data of natural images and codes involved in this paper are available from the corresponding author on reasonable request.

References

  1. Abboud, F., Chouzenoux, E., Pesquet, J.C., Chenot, J.H., Laborelli, L.: An alternating proximal approach for blind video deconvolution. Signal Process. Image Commun. 70, 21–36 (2019)

    Article  Google Scholar 

  2. Ahmed, A., Recht, B., Romberg, J.: Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2013)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  Google Scholar 

  4. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  Google Scholar 

  5. Auslender, A.: Asymptotic properties of the Fenchel dual functional and applications to decomposition problems. J. Optim. Theory Appl. 73(3), 427–449 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  Google Scholar 

  8. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    Article  MathSciNet  Google Scholar 

  9. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  10. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17(1), 91–115 (2004)

    Article  MathSciNet  Google Scholar 

  12. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  13. Chan, T.F., Yip, A.M., Park, F.E.: Simultaneous total variation image inpainting and blind deconvolution. Int. J. Imaging Syst. Technol. 15(1), 92–102 (2005)

    Article  Google Scholar 

  14. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. TOG 28(5), 145 (2009)

    Google Scholar 

  15. Coste, M.: An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa (2000)

  16. Ding, W., Ng, M.K., Zhang, W.: A Peaceman–Rachford splitting method with monotone plus skew-symmetric splitting for nonlinear saddle point problems. J. Sci. Comput. 81(2), 763–788 (2019)

    Article  MathSciNet  Google Scholar 

  17. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  18. Van den Dries, L.: A generalization of the Tarski–Seidenberg theorem, and some nondefinability results. Bull. Am. Math. Soc. 15(2), 189–193 (1986)

    Article  MathSciNet  Google Scholar 

  19. Gabay, D., Mercier, B.: A dual algorithm for the solution of non linear variational problems via finite element approximation. Institut de recherche d’informatique et d’automatique (1975)

  20. Groetsch, C.: The theory of Tikhonov regularization for Fredholm equations. Pitman Publication, Boston (1984)

    MATH  Google Scholar 

  21. Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 668–684 (2018)

  22. Karow, M.: Geometry of spectral value sets. PhD thesis, Verlag nicht ermittelbar (2003)

  23. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de linstitut Fourier 48, 769–783 (1998)

    Article  MathSciNet  Google Scholar 

  24. Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, pp. 841–848 (2007)

  25. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)

  26. Li, F., Ng, M.K., Plemmons, R.J.: Coupled segmentation and denoising/deblurring models for hyperspectral material identification. Numer. Linear Algebra Appl. 19(1), 153–173 (2012)

    Article  MathSciNet  Google Scholar 

  27. Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex optimization. Appl. Comput. Harmon. Anal. 47(3), 893–934 (2019)

    Article  MathSciNet  Google Scholar 

  28. Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the admm with multiblock variables. SIAM J. Optim. 25(3), 1478–1497 (2015)

    Article  MathSciNet  Google Scholar 

  29. Ng, M.K., Chan, R.H., Tang, W.C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851–866 (1999)

    Article  MathSciNet  Google Scholar 

  30. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1628–1636 (2016)

  31. Perrone, D., Favaro, P.: A clearer picture of total variation blind deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1041–1055 (2015)

    Article  Google Scholar 

  32. Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Romberg, J., Tian, N., Sabra, K.: Multichannel blind deconvolution using low rank recovery. In: Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XI, vol. 8750, p. 87500E. International Society for Optics and Photonics (2013)

  34. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  35. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. Acm Trans. Graph. TOG 27(3), 73 (2008)

    Google Scholar 

  36. Si-Yao, L., Ren, D., Yin, Q.: Understanding kernel size in blind deconvolution. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2068–2076. IEEE (2019)

  37. Tarski, A.: A decision method for elementary algebra and geometry. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 24–84. Springer (1998)

  38. Wang, W., Carreira-Perpinán, M.A.: Projection onto the probability simplex: an efficient algorithm with a simple proof, and an application. arXiv:1309.1541 (2013)

  39. Wang, W., Ng, M.K.: On algorithms for automatic deblurring from a single image. J. Comput. Math. 30, 80–100 (2012)

  40. Wang, W., Zhao, X., Ng, M.: A cartoon-plus-texture image decomposition model for blind deconvolution. Multidimens. Syst. Signal Process. 27(2), 541–562 (2016)

    Article  MathSciNet  Google Scholar 

  41. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

  42. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)

    Article  MathSciNet  Google Scholar 

  43. You, Y.L., Kaveh, M.: Blind image restoration by anisotropic regularization. IEEE Trans. Image Process. 8(3), 396–407 (1999)

    Article  Google Scholar 

  44. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Trans. Graph. 26(3), 1 (2007). https://doi.org/10.1145/1276377.1276379

    Article  Google Scholar 

  45. Zhou, X., Yang, C., Zhao, H., Yu, W.: Low-rank modeling and its applications in image analysis. ACM Comput. Surv. CSUR 47(2), 36 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-lei Lin.

Ethics declarations

Conflict of interest

1. I confirm that I have read, understand and agreed to the submission guidelines, policies and submission declaration of the journal. 2. I confirm that all authors of the manuscript have no conflict of interests to declare. 3. I confirm that the manuscript is the authors’ original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere. 4. On behalf of all Co-Authors, I shall bear full responsibility for the submission. 5. I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission. 6. I confirm that the paper now submitted is not copied or plagiarized version of some other published work. 7. I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors. 8. If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies. 9. I understand that submission of false or incorrect information/undertaking would invite appropriate penal actions as per norms/rules of the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by RGC GRF 12200317, 12300218, 12300519, 17201020, 17300021 and NSAF U1930402.

Appendices

Appendix A: Some Preliminaries for Proving Theorem 3.1

Definition A.1

([22]) Let V be a finite dimensional real vector space and let \(\phi :V\rightarrow {\mathbb {R}}^{n}\) be a linear isomorphism.

  1. (a)

    A subset \(A\subset {\mathbb {R}}^n\) is called a semi-algebraic set if and only if there exists a finite number of real polynomial functions \(P_{ij}, Q_{ij}:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) such that

    $$\begin{aligned} A=\bigcup \limits _{j=1}^{p}\bigcap \limits _{i=1}^{q}\{x\in {\mathbb {R}}^n|P_{ij}(x)=0,\quad Q_{ij}(x)<0\}. \end{aligned}$$
  2. (b)

    A subset \(B\subset V\) is said to be semi-algebraic if and only if \(\phi (B)\) is a semi-algebraic set in \({\mathbb {R}}^{n}\).

  3. (c)

    A function \(f:A_1\subset {\mathbb {R}}^n\rightarrow A_2\subset {\mathbb {R}}^m\) is said to be semi-algebraic if and only if its graph \(\{(x,f(x))\in {\mathbb {R}}^{n+m}|x\in A_1\}\) is a semi-algebraic set in \({\mathbb {R}}^{n+m}\).

  4. (d)

    A function \(f:B_1\subset V\rightarrow B_2\subset {\mathbb {R}}^{m}\) is said to be semi-algebraic if and only if the composition \(f\circ \phi ^{-1}:\phi (B_1)\rightarrow B_2\) is semi-algebraic.

We call a function f is semi-algebraic on A if and only if \(\{(x,f(x))|x\in A\}\) is a semi-algebraic set.

Lemma A.1

([7, 8, 23]) A semi-algebraic real valued function f is a KL function, i.e., f satisfies Kurdyka-ojasiewicz property at each \(x\in \mathrm{dom}(f)\).

Proposition A.1

([4, 6, 15, 22, 42])

  1. (i)

    A subset of \({\mathbb {R}}\) is semi-algebraic if and only if it is finite union of points and open intervals (bounded or unbounded).

  2. (ii)

    Complements, finite unions, finite intersections, finite Cartesian products of semi-algebraic sets are semi-algebraic.

  3. (iii)

    Finite sums and finite products of semi-algebraic functions are semi-algebraic.

  4. (iv)

    The composition \(g\circ f\) of semi-algebraic mappings \(f:A_1\rightarrow A_2\) and \(g:A_2\rightarrow A_3\) is semi-algebraic.

  5. (v)

    If \(f:A_1\rightarrow A_2\) is semi-algebraic and \(A_3\subset A_1\) is a semi-algebraic subset, then \(f(A_3)\) is a semi-algebraic set.

  6. (vi)

    Polynomials defined on \({\mathbb {R}}^n\) are semi-algebraic functions.

  7. (vii)

    The absolute value function \(f(x):=|x|\) is semi-algebraic on \({\mathbb {R}}\).

  8. (viii)

    The nuclear norm function \(f_*:w\in {\mathbb {R}}^{M_1}\mapsto ||{\mathbb {V}}_1^{-1}(w)||_{*}\in [0,+\infty )\) is semi-algebraic.

  9. (IX)

    If \(f_{i}:A\rightarrow {\mathbb {R}}\) is semi-algebraic for each \(i=1,2,\ldots ,n\), then the function \(f:x\in A\mapsto (f_1(x);f_2(x);\cdots ;f_n(x))\in {\mathbb {R}}^{n}\) is semi-algebraic.

Proposition A.2

If \(f:A_1\rightarrow A_2\) is semi-algebraic and \(A_3\subset A_1\) is a semi-algebraic subset, then f is semi-algebraic on \(A_3\).

Proof

By Proposition A.1\(\mathbf{(ii)}\), \(\mathbf{(v)}\), \(A_3\times f(A_3)\) is semi-algebraic. Notice that

$$\begin{aligned} \{(x,f(x))|x\in A_3\}=\{(x,f(x))|x\in A_1\}\cap (A_3\times f(A_3)), \end{aligned}$$

which together with Proposition A.1\(\mathbf{(ii)}\) proves the proposition. \(\square \)

For positive integer n, define a coordinate projection \(\Pi _{n+1}^{n}:{\mathbb {R}}^{n+1}\rightarrow {\mathbb {R}}^{n}\) such that

$$\begin{aligned} \Pi _{n+1}^{n}(\mathbf{w}):=(w_1;w_2;\ldots ;w_n)\in {\mathbb {R}}^{n} \mathrm{~for~each~}\mathbf{w}=(w_1;w_2;\ldots ;w_n;w_{n+1})\in {\mathbb {R}}^{n+1}. \end{aligned}$$

Lemma A.2

([18, 37]) If A is a semi-algebraic set in \({\mathbb {R}}^{n+1}\), then \(\Pi _{n+1}^{n}(A)\) is a semi-algebraic set in \({\mathbb {R}}^{n}\).

Lemma A.3

\({\tilde{F}}\) is semi-algebraic on \({\hat{S}}\). Hence, \({\tilde{F}}\) satisfies the Kurdyka-ojasiewicz property at each \(v\in {\hat{S}}\).

Proof

On \({\hat{S}}\), \({\tilde{F}}\) can be expressed as

$$\begin{aligned} {\tilde{F}}(v):=G(v)+g_1(v_1)+g_3(v_3),\quad v\in {\hat{S}}. \end{aligned}$$

From the definition of \({\hat{S}}\), it is clear that

$$\begin{aligned} {\hat{S}}={\hat{S}}_1\times {\hat{S}}_2\times {\hat{S}}_3, \end{aligned}$$

where

$$\begin{aligned}&{\hat{S}}_1=\left\{ v_1\in {\mathbb {R}}^{M_1}\Big | v_1(i)=[{\mathbb {V}}_1(\mathbf{M})](i)\mathrm{~for~}i\in {\mathbb {I}}_1(\Omega ),~ v_1(i)\in [0,1]\mathrm{~for~}i\notin {\mathbb {I}}_1(\Omega )\right\} , \end{aligned}$$
(A.1)
$$\begin{aligned}&{\hat{S}}_2=\{v_2\in {\mathbb {R}}^{M_2}|v_2(i)\ge 0\mathrm{~for~each~}i,\quad \mathbf{1}^{\mathrm{T}}v_2=1\}, \end{aligned}$$
(A.2)
$$\begin{aligned}&{\hat{S}}_3=\{v_3\in {\mathbb {R}}^{M_3}|v_3(i)\in [0,1] \mathrm{~for~each~}i\}. \end{aligned}$$
(A.3)

By Proposition A.1\(\mathbf{(i)}\), \(\mathbf{(ii)}\), it is clear that \({\hat{S}}_1\) and \({\hat{S}}_3\) are both semi-algebraic sets.

Denote \({\mathbb {R}}_{+}^{M_2}=[0,+\infty )^{M_2}\). Define a linear polynomial \(\theta :{\mathbb {R}}^{M_2}\rightarrow {\mathbb {R}}\) such that

$$\begin{aligned} \theta (w):=\mathbf{1}^{\mathrm{T}}w,\quad w\in {\mathbb {R}}^{M_2}. \end{aligned}$$

Then, it is easy to verify that \({\hat{S}}_2=\Pi _{M_2+1}^{M_2}({\hat{S}}_{2,1}\cap {\hat{S}}_{2,2})\), where

$$\begin{aligned} {\hat{S}}_{2,1}=\{(w,\theta (w))|w\in {\mathbb {R}}_{+}^{M_2}\},\quad {\hat{S}}_{2,2}={\mathbb {R}}_{+}^{M_2}\times (-\infty ,1]. \end{aligned}$$

Notice that \({\mathbb {V}}_i^{-1}\) (\(i=1,2,3\)) are linear mappings between finite-dimension spaces. Hence, each element of \({\mathbb {V}}_i^{-1}(v_i)\) (\(i=1,2,3\)) is actually a linear polynomial of \(v:=(v_1;v_2;v_3)\). Additionally, by the definition of \(||\cdot ||_{F}\) and the bi-linearity of ‘\(\otimes \)’, we know that G(v) is a polynomial of v. Moreover, \(D_{1}\) and \(D_{2}\) are linear mappings between finite-dimension spaces. Hence, each element of \(D_{1}(v_3)\) and \(D_{2}(v_3)\) can be regarded as a linear polynomial of \(v:=(v_1;v_2;v_3)\). Therefore, \(g_3(v_3)\) is simply finite sums of compositions of absolute value function and linear polynomial of v. Define \(G_3(v):=G(v)+g_3(v_3)\) for any \(v=(v_1;v_2;v_3)\in {\mathbb {R}}^{M}\) with \(v_3\in {\mathbb {R}}^{M_3}\). To summarize, \(G_3\) is semi-algebraic on \({\mathbb {R}}^{M}\) by Proposition A.1\(\mathbf{(iii)}\), \(\mathbf{(iv)}\), \(\mathbf{(vi)}\), \(\mathbf{(vii)}\).

For any \(v=(v_1;v_2;v_3)\in {\mathbb {R}}^{M}\) with \(v_i\in {\mathbb {R}}^{M_i}~(i=1,2,3)\), define

$$\begin{aligned} {\mathbb {M}}(v):=(m_1(v);m_2(v);\cdots ;m_1(v))\in {\mathbb {R}}^{M_1}\mathrm{~such~that~}m_i(v)=v_1(i),\quad i\in \Xi (M_1). \end{aligned}$$

Then, \(m_{i}(v)\) is a linear polynomial of v for each \(i\in \Xi (M_1).\) Thus, by Proposition A.1\(\mathbf{(vi)}\), \(\mathbf{(IX)}\), \({\mathbb {M}}:{\mathbb {R}}^{M}\rightarrow {\mathbb {R}}^{M_1}\) is semi-algebraic. Moreover, by Proposition A.1\(\mathbf{(viii)}\), the nuclear norm function \(f_*\) is semi-algebraic. The composition \(f_*\circ {\mathbb {M}}:{\mathbb {R}}^{M}\rightarrow [0,+\infty )\) is semi-algebraic by Proposition A.1\(\mathbf{(iv)}\). Notice that for any \(v=(v_1;v_2;v_3)\in {\mathbb {R}}^{M}\) with \(v_1\in {\mathbb {R}}^{M_1}\), \(g_1(v_1)=\mu (f_{*}\circ {\mathbb {M}})(v)\). In other words, \({\tilde{F}}(v)=G_3(v)+\mu (f_{*}\circ {\mathbb {M}})(v)\). Hence, \({\tilde{F}}\) as summation of two semi-algebraic functions is semi-algebraic on \({\mathbb {R}}^{M}\).

By Proposition A.1\(\mathbf{(i)}\), \(\mathbf{(ii)}\), \({\hat{S}}_{2,2}\) is a semi-algebraic set in \({\mathbb {R}}^{M_2+1}\). \(\theta :{\mathbb {R}}^{M_2}\rightarrow {\mathbb {R}}\) as a linear polynomial is semi-algebraic. And \({\mathbb {R}}_{+}^{M_2}\subset {\mathbb {R}}^{M_2}\) is a semi-algebraic subset. Then, by Proposition A.2, \(\theta \) is semi-algebraic on \({\mathbb {R}}_{+}^{M_2}\), i.e., \({\hat{S}}_{2,1}\) is a semi-algebraic subset in \({\mathbb {R}}^{M_2+1}\). Then, by Proposition A.1\(\mathbf{(ii)}\), \({\hat{S}}_{2,1}\cap {\hat{S}}_{2,2}\) is semi-algebraic. Hence, from Lemma A.2, \({\hat{S}}_2\) is semi-algebraic set. Hence, \({\hat{S}}\) as Cartesian products of \({\hat{S}}_i~(i=1,2,3)\) is semi-algebraic.

Then, by Proposition A.2, \({\tilde{F}}\) is semi-algebraic on \({\hat{S}}\). The proof is complete. \(\square \)

Appendix B: Proof of Theorem 3.1

Proof

For two subsets \(A_1\), \(A_2\) and an element x of the same vector space, denote

$$\begin{aligned} A_1+A_2:=\{x_1+x_2|x_1\in A_1,~x_2\in A_2\},\quad x+A_1=A_1+x:=\{x+y|y\in A_1\}. \end{aligned}$$

It has been mentioned above that \({\tilde{F}}\) is a PLSC function on \({\mathbb {R}}^{M}\). From (3.2)–(3.4), we see that

$$\begin{aligned}&{\tilde{F}}(v_1^{i+1};v_2^{i};v_3^{i})+\frac{\rho _1}{2}||v_1^{i+1}-v_1^i||_2^2\le {\tilde{F}}(v_1^{i};v_2^{i};v_3^{i}),\quad i\in {\mathbb {N}},\\&{\tilde{F}}(v_1^{i+1};v_2^{i+1};v_3^{i})+\frac{\rho _2}{2}||v_2^{i+1}-v_2^{i}||_2^2\le {\tilde{F}}(v_1^{i+1};v_2^{i};v_3^{i}),\quad i\in {\mathbb {N}},\\&{\tilde{F}}(v_1^{i+1};v_2^{i+1};v_3^{i+1})+\frac{\rho _3}{2}||v_3^{i+1}-v_3^{i}||_2^2\le {\tilde{F}}(v_1^{i+1};v_2^{i+1};v_3^{i}),\quad i\in {\mathbb {N}}. \end{aligned}$$

Summing over the three inequalities above, we obtain

$$\begin{aligned} {\tilde{F}}(v^{i+1})+\frac{{\check{\rho }}}{2}||v^{i+1}-v^{i}||_2^2\le {\tilde{F}}(v^{i}),\quad i\in {\mathbb {N}}, \end{aligned}$$
(B.1)

where \({\check{\rho }}=\min \{\rho _1,\rho _2,\rho _3\}\). Hence, \(\mathbf{H1}\) (sufficient decrease condition) is satisfied with \(a=\frac{{\check{\rho }}}{2}\).

Since \({\hat{S}}\) is a bounded set and it is clear that \({v^i}_{i\in {\mathbb {N}}}\subset {\hat{S}}\), \({v^i}_{i\in {\mathbb {N}}}\) is bounded, i.e.,

$$\begin{aligned} \sup \limits _{i\in {\mathbb {N}}}||v^i||_2<+\infty . \end{aligned}$$

Let \(\partial _{v_i}\) and \(\nabla _{v_i}\) denote sub-differential and gradient with respect to variable \(v_i\), respectively, for \(i=1,2,3\). It has been mentioned in proof of Lemma A.3 that G is a polynomial function and thus is infinitely differentiable. Then, (3.2) and Proposition 3.1 imply that

$$\begin{aligned} 0&\in \partial _{v_1}\Big [{\tilde{F}}(\cdot ;v_2^i;v_3^i)+\frac{\rho _1}{2}||\cdot -v_1^{i}||_2^2\Big ]\Big |_{v_1=v_1^{i+1}}\nonumber \\&=\partial _{v_1}{\tilde{F}}(v_1^{i+1};v_2^i;v_3^i)+\rho _1(v_1^{i+1}-v_1^{i})\nonumber \\&=\nabla _{v_1}G(v_1^{i+1};v_2^i;v_3^i)+\partial _{v_1}\delta _{{\hat{S}}}(v_1^{i+1};v_2^i;v_3^i)+\partial g_1(v_1^{i+1})+\rho _1(v_1^{i+1}-v_1^{i}),\quad i\in {\mathbb {N}}. \end{aligned}$$
(B.2)

Similarly, (3.3)–(3.4) and Proposition 3.1 imply that

$$\begin{aligned}&0\in \nabla _{v_2}G(v_1^{i+1};v_2^{i+1};v_3^{i})+\partial _{v_2}\delta _{{\hat{S}}}(v_1^{i+1};v_2^{i+1};v_3^i)+\rho _2(v_2^{i+1}-v_2^{i}),\quad i\in {\mathbb {N}}, \end{aligned}$$
(B.3)
$$\begin{aligned}&0\in \nabla _{v_3}G(v_1^{i+1};v_2^{i+1};v_3^{i+1})+\partial g_3(v_3^{i+1})+\partial _{v_3}\delta _{{\hat{S}}}(v_1^{i+1};v_2^{i+1};v_3^{i+1})+\rho _3(v_3^{i+1}-v_3^{i}),\quad i\in {\mathbb {N}}. \end{aligned}$$
(B.4)

(B.2)–(B.4) imply that there exists \(w_1^{i+1}\in \partial _{v_1}\delta _{{\hat{S}}}(v_1^{i+1};v_2^i;v_3^i)+\partial g_1(v_1^{i+1})\), \(w_2^{i+1}\in \partial _{v_2}\delta _{{\hat{S}}}(v_1^{i+1};v_2^{i+1};v_3^i)\), \(w_{3}^{i+1}\in \partial g_{3}(v_{3}^{i+1})+\partial _{v_3}\delta _{{\hat{S}}}(v_1^{i+1};v_2^{i+1};v_3^{i+1})\) such that

$$\begin{aligned} -{\tilde{w}}^{i+1}=u^{i}+D(v^{i+1}-v^{i}),\quad i\in {\mathbb {N}}, \end{aligned}$$

where

$$\begin{aligned}&{\tilde{w}}^{i+1}=(w_1^{i+1};w_2^{i+1};w_3^{i+1}),\\&u^{i}=(\nabla _{v_1}G(v_1^{i+1};v_2^i;v_3^i);\nabla _{v_2}G(v_1^{i+1};v_2^{i+1};v_3^{i});\nabla _{v_3}G(v_1^{i+1};v_2^{i+1};v_3^{i+1})),\\&D=\mathrm{blockdiag}(\rho _1I_{M_1},\rho _2I_{M_2},\rho _3I_{M_3}), \end{aligned}$$

\(I_k\) denotes \(k\times k\) identity matrix. Denote \(w^{i+1}={\tilde{w}}^{i+1}+\nabla G(v^{i+1})\). Notice that

$$\begin{aligned} \delta _{{\hat{S}}}(v_1,v_2,v_3)=\sum \limits _{j=1}^{3}\delta _{{\hat{S}}_j}(v_j), \end{aligned}$$

with \({\hat{S}}_j~(j=1,2,3)\) defined in (A.1)–(A.3). Moreover, since \(v_{j}^{i}\in {\hat{S}}_{j}\) for all \(i\in {\mathbb {N}}\) and \(j=1,2,3\), we have

$$\begin{aligned}&\partial _{v_1}\delta _{{\hat{S}}}(v_1^{i+1};v_2^i;v_3^i)=[\partial \delta _{{\hat{S}}_1}(v_1^{i+1});\mathbf{0}_{M_2};\mathbf{0}_{M_3}],\quad \partial _{v_2}\delta _{{\hat{S}}}(v_1^{i+1};v_2^{i+1};v_3^i)=[\mathbf{0}_{M_1};\partial \delta _{{\hat{S}}_2}(v_2^{i+1});\mathbf{0}_{M_3}],\\&\partial _{v_3}\delta _{{\hat{S}}}(v_1^{i+1};v_2^{i+1};v_3^{i+1})=[\mathbf{0}_{M_1};\mathbf{0}_{M_2};\partial \delta _{{\hat{S}}_3}(v_3^{i+1})], \end{aligned}$$

where \(\mathbf{0}_{m}\) denotes \(m\times 1\) zero vector. Then, it is clear that \(w^{i+1}\in \partial {\tilde{F}}(v^{i+1})\) and

$$\begin{aligned} -w^{i+1}=u^{i}-\nabla G(v^{i+1})+D(v^{i+1}-v^{i}),\quad i\in {\mathbb {N}}. \end{aligned}$$
(B.5)

Denote \(E=\{v^{i}|i\in {\mathbb {N}}\}\). For \(v=(v_1;v_2;v_3)\in {\mathbb {R}}^{M}\) with \(v_i\in {\mathbb {R}}^{M_i}\) (\(i=1,2,3\)), define the coordinate projections by

$$\begin{aligned} \Pi _i(v):=v_i,\quad i=1,2,3. \end{aligned}$$

Denote \({\hat{E}}=\Pi _1(E)\times \Pi _2(E)\times \Pi _3(E)\). Since E is bounded, it is trivial to see that \({\hat{E}}\subset {\mathbb {R}}^{M}\) is also bounded. Since G is a polynomial, it is easy to prove that \(\nabla G\) is Lipschitz-continuous on any bounded subset of \({\mathbb {R}}^{M}\). Hence, there exists a constant \(c>0\) such that

$$\begin{aligned} ||\nabla G(v)-\nabla G(w)||_2\le c||v-w||_2,\quad v,w\in {\hat{E}}. \end{aligned}$$

Therefore,

$$\begin{aligned} ||u^{i}-\nabla G(v^{i+1})||_2=&[||\nabla _{v_1}G(v_1^{i+1};v_2^i;v_3^i)-\nabla _{v_1}G(v^{i+1})||_2^2\nonumber \\&+||\nabla _{v_2}G(v_1^{i+1};v_2^{i+1};v_3^i)-\nabla _{v_2}G(v^{i+1})||_2^2]^{\frac{1}{2}}\nonumber \\ \le&[c^2(||v_2^{i}-v_2^{i+1}||_2^2+||v_3^{i}-v_3^{i+1}||_2^2)+c^2||v_3^i-v_3^{i+1}||_2^2]^{\frac{1}{2}}\nonumber \\ \le&\sqrt{2}c||v^{i+1}-v^{i}||_2,\quad i\in {\mathbb {N}}, \end{aligned}$$

which together with (B.5) implies that

$$\begin{aligned} ||w^{i+1}||_2\le ||u^{i}-\nabla G(v^{i+1})||_2+{\hat{\rho }}||v^{i+1}-v^{i}||_2\le (\sqrt{2}c+{\hat{\rho }})||v^{i+1}-v^{i}||_2,\quad i\in {\mathbb {N}}, \end{aligned}$$

where \({\hat{\rho }}=\max \{\rho _1,\rho _2,\rho _3\}\). Hence, \(\mathbf{H2}\) (Relative error condition) is satisfied with \(b=\sqrt{2}c+{\hat{\rho }}\).

Moreover, since \(\{v^i\}_{i\in {\mathbb {N}}}\subset {\mathbb {R}}^{M}\) is bounded and thus relative compact, there exists a subsequence \(\{v^{i_j}\}_{j\in {\mathbb {N}}}\) and \(\bar{v}\in {\mathbb {R}}^{M}\) such that \(v^{i_j}\rightarrow \bar{v}\) as \(j\rightarrow +\infty \). As mentioned above \(\{v_1^i|i\in {\mathbb {N}}\}\subset {\hat{S}}\), it holds that \(\{v^i\}_{i\in {\mathbb {N}}}\subset {\hat{S}}\). Since \({\hat{S}}\) is closed, \(\bar{v}\in {\hat{S}}\). Additionally, it is easy to see that \({\tilde{F}}\) is continuous on \({\hat{S}}\). Therefore, \({\tilde{F}}(v^{i_j})\rightarrow {\tilde{F}}(\bar{v})\) as \(j\rightarrow +\infty \). Hence, \(\mathbf{H3}\) (Continuity condition) is fulfilled.

By Lemma A.3, \({\tilde{F}}\) is semi-algebraic on \({\hat{S}}\). Hence, by Lemma A.1, \({\tilde{F}}\) satisfies the Kurdyka-ojasiewicz property at \(\bar{v}\in {\hat{S}}\). Then, the proof is complete by applying Lemma 3.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Xl., Ng, M.K. Image Completion and Blind Deconvolution: Model and Algorithm. J Sci Comput 89, 54 (2021). https://doi.org/10.1007/s10915-021-01554-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01554-4

Keywords

Mathematics Subject Classification

Navigation