Skip to main content

Advertisement

Log in

A Second Order Accurate Scalar Auxiliary Variable (SAV) Numerical Method for the Square Phase Field Crystal Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose and analyze a second order accurate (in time) numerical scheme for the square phase field crystal equation, a gradient flow modeling crystal dynamics at the atomic scale in space but on diffusive scales in time. Its primary difference with the standard phase field crystal model is an introduction of the 4-Laplacian term in the free energy potential, which in turn leads to a much higher degree of nonlinearity. To make the numerical scheme linear while preserving the nonlinear energy stability, we make use of the scalar auxiliary variable (SAV) approach, in which a second order backward differentiation formula is applied in the temporal stencil. Meanwhile, a direct application of the SAV method faces certain difficulties, due to the involvement of the 4-Laplacian term, combined with a derivation of the lower bound of the nonlinear energy functional. In the proposed numerical method, an appropriate decomposition for the physical energy functional is formulated, so that the nonlinear energy part has a well-established global lower bound, and the rest terms lead to constant-coefficient diffusion terms with positive eigenvalues. In turn, the numerical scheme could be very efficiently implemented by constant-coefficient Poisson-like type solvers (via FFT), and energy stability is established by introducing an auxiliary variable, and an optimal rate convergence analysis is provided for the proposed SAV method. A few numerical experiments are also presented, which confirm the efficiency and accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aviles, P., Giga, Y.: The distance function and defect energy. Proc. R. Soc. Edinb. Sect. A 126, 923 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Backofen, R., Rätz, A., Voigt, A.: Nucleation and growth by a phase field crystal (PFC) model. Philos. Mag. Lett. 87, 813 (2007)

    Article  Google Scholar 

  3. Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baskaran, A., Lowengrub, J., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, Chelmsford (2001)

    MATH  Google Scholar 

  6. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, N., Wang, C., Wise, S.M.: Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete Contin. Dyn. Syst. Ser. B 21, 1689–1711 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the Cahn–Hilliard–Hele–Shaw equation. Discrete Contin. Dyn. Syst. Ser. B 24(1), 149–182 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. EASIM Math. Model. Numer. Anal. 54, 727–750 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7, 13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W., Liu, Y., Wang, C., Wise, S.M.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85, 2231–2257 (2016)

    Article  MATH  Google Scholar 

  13. Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for a ternary Cahn–Hilliard system. J. Sci. Comput. 84, 27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the & “Good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)

  16. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81(1), 154–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, K., Wang, C.: Long time stability of high order multi-step numerical schemes for two-dimensional incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 54, 3123–3144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, K., Wang, C., Wise, S.M.: An energy stable Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26, 1335–1364 (2019)

    Article  MathSciNet  Google Scholar 

  19. Cheng, K., Wang, C., Wise, S.M.: A weakly nonlinear energy stable scheme for the strongly anisotropic Cahn–Hilliard system and its convergence analysis. J. Comput. Phys. 405, 109104 (2020)

    Article  Google Scholar 

  20. Cheng, K., Wang, C., Wise, S.M., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 13070 (2020)

    Article  MathSciNet  Google Scholar 

  22. Cheng, Q., Shen, J.: Global constraints preserving scalar auxiliary variable schemes for gradient flows. SIAM J. Sci. Comput. 42, A2514–A2536 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 78, 1467–1487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diegel, A., Feng, X., Wise, S.M.: Convergence analysis of an unconditionally stable method for a Cahn–Hilliard–Stokes system of equations. SIAM J. Numer. Anal. 53, 127–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diegel, A., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, L., Feng, W., Wang, C., Wise, S.M., Zhang, Z.: Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation. Comput. Math. Appl. 75(6), 1912–1928 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. W. E. Convergence of spectral methods for the Burgers’ equation. SIAM J. Numer. Anal.; 29:1520–1541, (1992)

  28. Weinan, E.: Convergence of Fourier methods for Navier–Stokes equations. SIAM J. Numer. Anal. 30, 650–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    Article  Google Scholar 

  30. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    Article  Google Scholar 

  31. Elder, K.R., Provatas, N., Berry, J., Stefanovic, P., Grant, M.: Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 77, 064107 (2007)

    Article  Google Scholar 

  32. Feng, W., Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn–Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Feng, W., Salgado, A.J., Wang, C., Wise, S.M.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34(6), 1975–2007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Golovin, A.A., Nepomnyashchy, A.A.: Disclinations in square and hexagonal patterns. Phys. Rev. E 67, 056202 (2003)

    Article  MathSciNet  Google Scholar 

  36. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, Theory and Applications. SIAM, Philadelphia, PA (1977)

    Book  MATH  Google Scholar 

  37. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-d viscous Burgers’ equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14, 489–515 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hao, Y., Huang, Q., Wang, C.: A third order BDF energy stable linear scheme for the no-slope-selection thin film model. Commun. Comput. Phys. 29(3), 905–929 (2021)

    Article  MathSciNet  Google Scholar 

  41. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  42. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, X., Shen, J., Rui, H.: Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math. Comput. 88, 2047–2068 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135, 679–709 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Chem. Phys. 110, 8032–8044 (1999)

    Article  Google Scholar 

  47. Meng, X., Qiao, Z., Wang, C., Zhang, Z.: Artificial regularization parameter analysis for the no-slope-selection epitaxial thin film model. CSIAM Trans. Appl. Math. 1, 441–462 (2020)

    Article  Google Scholar 

  48. Provatas, N., Dantzig, J.A., Athreya, B., Chan, P., Stefanovic, P., Goldenfeld, N., Elder, K.R.: Using the phase-field crystal method in the multiscale modeling of microstructure evolution. JOM 59, 83 (2007)

    Article  Google Scholar 

  49. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley, Hoboken (2010)

    Book  Google Scholar 

  50. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stefanovic, P., Haataja, M., Provatas, N.: Phase-field crystals with elastic interactions. Phys. Rev. Lett. 96, 225504 (2006)

    Article  Google Scholar 

  55. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319 (1977)

    Article  Google Scholar 

  56. Wang, C., Wise, S.M.: Global smooth solutions of the modified phase field crystal equation. Methods Appl. Anal. 17, 191–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, X.: An efficient second order in time scheme for approximating long time statistical prop- erties of the two dimensional Navier–Stokes equations global smooth solutions of the modified phase field crystal equation. Methods Appl. Anal. 17, 191–212 (2010)

    Article  MathSciNet  Google Scholar 

  59. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu, K.A., Plapp, M., Voorhees, P.W.: Controlling crystal symmetries in phase-field crystal models. J. Phys. Condensed Matter 22, 364102 (2010)

    Article  Google Scholar 

  61. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)

    Article  MathSciNet  Google Scholar 

  62. Zhang, C., Huang, J., Wang, C., Yue, X.: On the operator splitting and integral equation preconditioned deferred correction methods for the “Good” Boussinesq equation. J. Sci. Comput. 75, 687–712 (2018)

  63. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the & “Good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

  64. Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSFC 11971047 (Q. Huang) and NSF DMS-2012669 (C. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiumei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 2.4

Due to the periodic boundary condition for f and its cell-centered representation, it has a corresponding discrete Fourier transformation, as the form given by (2.3):

$$\begin{aligned} f_{i,j,k} = \sum _{\ell ,m,n=-K}^{K} {\hat{f}}_{\ell ,m,n}^N \exp \left( 2 \pi \mathrm{i} ( \ell x_i + m y_j + n z_k ) \right) . \end{aligned}$$
(A.1)

Then we make its extension to a continuous function:

$$\begin{aligned} f_N (x,y,z) = \sum ^{K}_{\ell ,m,n=-K} {\hat{f}}^N_{\ell ,m,n} \exp \left( 2 \pi \mathrm{i} ( \ell x + m y + n z ) \right) . \end{aligned}$$
(A.2)

We denote a discrete grid function, \(g := \mathcal{D}_x f\), at a point-wise level. Since f corresponds to \(f_N \in \mathcal{B}^K\) (the space of trigonometric polynomials of degree at most K), an application of Parseval identity implies that

$$\begin{aligned} \begin{aligned}&\Vert \nabla _N \Delta _N f \Vert _2^2 = \Vert \nabla \Delta f_N \Vert ^2 = \sum ^{K}_{\ell ,m,n=-K} \lambda _{\ell , m, n}^6 | {\hat{f}}^N_{\ell ,m,n} |^2 , \\&\quad \Vert \Delta _N^3 f \Vert _2^2 = \Vert \Delta ^3 f_N \Vert ^2 = \sum ^{K}_{\ell ,m,n=-K} \lambda _{\ell , m, n}^{12} | {\hat{f}}^N_{\ell ,m,n} |^2 , \end{aligned} \end{aligned}$$
(A.3)

with \( \lambda _{\ell , m, n}\) introduced in (2.13). Meanwhile, the elliptic regularity for the continuous function \(f_N\) indicates that

$$\begin{aligned} \Vert \nabla \Delta f_N \Vert \le {\hat{C}}_0 \Vert \Delta ^3 f_N \Vert , \quad \text{ for } \text{ some } {\hat{C}}_0\text { only dependent on }\Omega . \end{aligned}$$
(A.4)

Finally, the discrete elliptic regularity inequality (2.24) is a direct combination of  (A.3) and (A.4). This completes the proof of Proposition 2.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Huang, Q. & Wang, C. A Second Order Accurate Scalar Auxiliary Variable (SAV) Numerical Method for the Square Phase Field Crystal Equation. J Sci Comput 88, 33 (2021). https://doi.org/10.1007/s10915-021-01487-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01487-y

Keywords

Mathematics Subject Classification

Navigation